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Abstract

This note comments on the Generalized Measure of Correlation (GMC)

that was suggested by Zheng et al. (2012). The GMC concept was partly

anticipated in some publications over 100 years earlier by Yule (1897, 1900,

1903, 1907, 1909) in the proceedings of the Royal Society, and by Kendall

(1946). Other antecedents discussed include work on dependency by Renyi

(1959) and Doksum and Samarov (1995), together with the Yule-Simpson

paradox. The GMC metric partly extends the concept of Granger causality,

so that we consider causality, graphical analysis and alternative measures of

dependency provided by copulas.
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1. Introduction

Zheng et al. (2012) suggest that Pearson's correlation, when used as a

measure of explained variance, is well understood, but a major limitation is

that it does not account for asymmetry. Zheng et al. (2012) present what

they suggest is a broadly applicable correlation measure, and consider a pair

of generalized measures of correlation (GMC) that deal with asymmetry in

the explained variance, and linear or nonlinear relations between random

variables.

The authors present examples under which the paired measures are

identical, and become a symmetric correlation measure that is the same as

the squared Pearson's correlation coe�cient, so that Pearson's correlation

is a special case of GMC. Zheng et al. (2012) suggest that the theoretical

properties of GMC show that GMC can be applicable in numerous applications,

and can lead to more meaningful conclusions and improved decision making.

Vinod (2015) applied the GMC metric in an economic paper which

featured an analysis of development economic markets in a study of 198

countries, and also developed the R library package 'generalCorr' (2019).

Allen and Hooper (2018) used the metric to analyse causal relations between

the VIX, S&P500, and the realized volatility (RV) of the S&P500 sampled

at 5-minute intervals. Chen et al. (2017) use a development of the GMC

concept to suggest a new model-free feature screening approach, namely
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sure explained variability and independence screening (SEVIS). At the core

of SEVIS is an application of GMC in the screening.

Zheng et al. (2012) intended to introduce e�ective and broadly applicable

statistical tools for dealing with asymmetry and nonlinear correlations between

random variables. For simplicity of illustration, they regard �linear� or

�symmetric� as special cases of �nonlinear� or �asymmetric�, respectively.

In the case of �linear and symmetric,� Pearson's correlation coe�cient is

an extremely important and widely-used analytical tool in statistical data

analysis. Zheng et al. (2012, p.1537) claim that 'New dependence measures'

that comprise Pearson's correlation coe�cient as a special case should be of

the greatest interest to practitioners.

The paper explores previous work related to this measure. There are a

number of relevant themes in the prior work. Some of the related issues

addressed by Zheng et al. (2012) were previously anticipated and developed

in the Proceedings of the Royal Society by the British Statistician, Udney

Yule in (1897), some 115 years earlier! This note sets out Yule's approach

and gives Yule (1897, 1900, 1909) credit for covering some of the foundations

of the topic, plus Yule (1903) and Pearson (1899), which anticipated the

Yule-Simpson paradox.

Other relevant work includes that of Renyi (1959) on dependence, Kendall

(1943, 1946) on regression, Kendall and Stuart (1979) on correlation ratios,

and Doksum and Samarov (1995) on non-parametric estimation of global

functions. In this comment, we consider some of these metrics, together

with Granger causality, graphical analysis and the use of Vine copulas to
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capture dependencies.

2. Generalised Measure of Correlation

Zheng et al. (2012) point out that, despite its ubiquity, there are inherent

limitations in the Pearson correlation coe�cient when it is used as a measure

of dependency. One limitation is that it does not account for asymmetry in

the explained variances, which are often innate among nonlinearly dependent

random variables. As a result, measures dealing with asymmetries are

needed.

In order to meet this requirement, Zheng et al. (2012) developed Generalized

Measures of Correlation (GMC). They commence with the familiar linear

regression model, and the partitioning of the variance into explained and

unexplained components:

V ar (X) = V ar(E(X | Y )) + E(V ar(X | Y )), (1)

whenever E(Y 2) < ∞ and E(X2) < ∞. Note that E(V ar(X | Y )) is the

expected conditional variance ofX given Y , so that E(V ar(X | Y ))/V ar(X)

can be interpreted as the explained variance of X by Y. Thus, we can write:

E(V ar(X | Y ))

V ar(X)
= 1− E(V ar(X | Y ))

V ar(X)
= 1− E[{X − E(X | Y )}2]

V ar(X)
.

The explained variance of Y given X can be de�ned similarly. This leads

Zheng et al. (2012) to de�ne a pair of generalized measures of correlation
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(GMC) as:

{GMC(Y | X), GMC(X | Y )} =

{
1− E[{Y − E(Y | X)}2]

V ar(Y )
, 1− E[{X − E(X | Y )}2]

V ar(X)

}
.

(2)

This pair of GMC measures has some attractive properties. It should be

noted that the two measures are identical when (X, Y ) is a bivariate normal

random vector. However, GMCs are nonzero while Pearson's correlation

coe�cient may have a zero value when two random variables are nonlinearly

dependent. GMC has various connections to Pearson's correlation coe�cient

and the coe�cient of determination in regression models. They are identical

to the squared Pearson's correlation coe�cient when two random variables

are related in a linear equation. A special case is where two random variables

follow a bivariate normal distribution.

3. Yule's (1897) approach to general correlation

Yule (1897a, p.477) observed that: �The only theory of correlation at

present available for practical use is based on the normal law of frequency,

but, unfortunately, this law is not valid in a great many cases which are

both common and important....in economic statistics, on the other hand,

normal distributions appear to be highly exceptional: variation of wages,

prices, valuations, pauperism, and so forth, are always skew.�

He suggests lettingOx andOy be the axes of a three-dimensional frequency

surface drawn through the mean 0 of the surface parallel to the axes of
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Figure 1: Yule's (1897) diagram

measurement, and the points marked (x) be the means of successive x arrays,

lying on some curve that may be called the curve of regression of x on y.

Then a line, RR, is �tted to this curve, as shown in Figure 1 (taken from

his paper).

In commenting on the diagram, Yule notes that, if the slope of the line

RR is positive, large values of x are associated with large values of y, while

if negative, large values of x are associated with small values of y.

More importantly, for current purposes, Yule also notes that if the means

of the arrays actually lie in a straight line (as in normal correlation), RR

must be the equation to the line of the regression. Yule then lets n be the

number of observations in any x array, and d be the horizontal distance

of the mean of this array from the line RR. He then proposes to subject
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the line to the condition that the sum of all quantities like nd should be a

minimum. In e�ect, he chooses to use the condition of least squares. He

cautions that he does this solely for convenience of the analysis, and that he

does not claim any advantages with regard to the probability of the results.

He also cautions that it would be absurd to do so, as it is postulated at the

outset that the curve of regression is only exceptionally a straight line, so

that there can be no meaning in seeking the most probable straight line to

represent the regression.

Yule proceeds by letting x and y be a pair of associated deviations,

de�nes σ as the standard deviation of any array about its mean, and writes

the equation of a straight line for RR as:

X = a+ bY.

It follows that, for any one array:

S{x− (a+ by)}2 = S{x− (a+ bY }2 = nσ2 + nd2.

He extends the meaning of S to sum over the whole surface:

S(nd2) = S{x− (a+ by)}2 − Snσ2,

where Snσ2 is independent of a, and is what he terms a characteristic of the

surface. It follows that, if S(nd2) is set to a minimum, this is equivalent to

making:
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S{x− (a+ by)}2

a minimum. Yule suggests forming a single-valued relation:

x = a+ by

between a pair of associated deviations, such that the sum of squares of

errors in estimating any one x from the corresponding y is a minimum. This

is simply the line of the regression RR. There will be two such equations to

be formed corresponding to the two lines of the regression.

Yule then considers multiple combinations of variables that can be considered

as two variables. As x and y represent deviations from their respective

means, Yule suggests using S to denote summation over the whole surface:

S(x) = S(y) = 0.

The characteristic or regression equations are of the form:

x = a1 + b1y

y = a2 + b2x.
(3)

Taking the equation for x, the normal equations for a1 and b1 are:

S(x) = N(a1) + b1S(y)

S(xy) = a1S(y) + b1(Sy
2)

(4)

with N being the number of correlated pairs. The �rst equation gives:
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a1 = 0,

while the second gives:

b1 =
S(xy)

S(y2)
.

Yule then lets S(x2) = N(σ2
1), S(y2) = N(σ2

2), and S(x, y) = Nrσ1σ2,

where σ1and σ2 are the two standard deviations or mean square errors, and

r is Bravais' (1846) value of the coe�cient of correlation. Yule rewrites b1

as:

b1 = r
σ1
σ2
. (5)

Similarly, when a2 = 0 :

b2 = r
σ2
σ1
. (6)

The expressions on the right of equations (3) and (4) are the values

obtained by Bravais on the assumption of normal correlation for the regressions

of x on y, and of y on x. Therefore, the Bravais values for the regressions

are simply the values of b1 and b2 that make:

S(x− b1y)2 and S(x− b2y)2

their respective minima.

Denis (2000) observes that Bravais (1846) mathematically found the
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equation of the normal surface for the frequency of error. Using both

analytic and geometric methods, Bravais also essentially found what would

eventually be coined the �regression line�, by investigating how the various

elliptical areas of the frequency surface vary according to observed quantities.

However, astronomers of the time were far more interested in �disposing� of

this common error variance, largely due to the concern that errors would

multiply, not compensate, when combining celestial observations.

Yule (1897) suggests proceeding by letting n be the number of correlated

pairs in any one array taken parallel to the axis of x, and θ be the angle

that the line of regression makes with the axis of y. For a single array:

S(xy) = yS(x) = ny2tanθ,

or, extending S to summation over the whole surface:

S(xy) = Ntanθσ2
2,

or:

tanθ = r
σ1
σ2
.

If the regression is linear, Bravais's formula may be used without investigating

the normality of the distribution.

In the general case, both coe�cients of regression must have the same

sign, namely the sign of r. Hence, either regression will serve to indicate
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whether there is correlation or not. Yule suggests that the regressions are

not convenient measures of correlation, as it may be found that:

b1 > b
′

1, b2 < b
′

2,

where b1, b2 and b
′
1b

′
2 are the regressions in the two cases. Yule queries to

which distribution should we attribute the greater correlation? He observes

that Bravais' coe�cient solves the di�culty by taking the geometrical mean

of the two regressions as the measure of correlation. It will still remain valid

for non-normal correlations.

Yule generalizes the argument by suggesting that, instead of measuring

x and y in arbitrary units, each is measured in terms of its own standard

deviation:

x

σ1
= ρ

y

σ2
(7)

and solves for ρ by the method of least squares. A constant on the right-hand

side can be ignored, as it would vanish, yielding:

ρ =
S(xy)

S(y2)

σ2
σ1

= r. (8)

If measured x and y are each in terms of their respective standard deviations,

r becomes the regression of x on y, and the regression of y on x.

Forming the sums of squares of the residuals in equations (1) and (6),

and inserting the values of b1, b2, and ρ, gives:
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S(x− b1)2 = Nσ2
1(1− r2)

S(x− b2)2 = Nσ2
2(1− r2)

S( x
σ1
− ρ y

σ2
)2 = S( y

σ2
− ρ x

σ1
)2 = N(1− r2),

(9)

each of which is positive. Hence, r cannot be greater than unity. If r is

equal to unity, each of the above becomes zero.

However,

S(
x

σ1
± y

σ2
)2

can only vanish if:

x

σ1
± y

σ2
= 0

in every case, or if the following relation holds:

x1
y1

=
x2
y2

=
x3
y3

= ..... = ±σ1
σ2
, (10)

with the sign of the last term in (10) dependent on the sign of r. Hence, the

statement that two variables are perfectly correlated implies that relation

(10) holds, or that all pairs of deviations bear the same ratio to one another.

It follows that, where the means of the arrays are not collinear, or the

deviation of the means of the arrays is not a linear function of the deviation,

r cannot be unity. If the regression model is far from linear, caution must

be used in using r to compare two di�erent distributions. This caution is

related to a central issue that Zheng et al. (2012) promote as one of the
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attractive properties of the GMC.

Equation (10) is the perfect case in the case of Gaussian distributions.

If we take the ratios of random variables (observations) this may introduce

nonlinear dependence. The explanation of GMC in equation [2] uses ratios

(transformed) to construct a nonlinear dependence measure: the quotient

correlation coe�cient, as discussed in Zhang (2008)1. Equation (3) shows

that the sample based Pearson's correlation coe�cient and the quotient

correlation coe�cient are asymptotically independent and demonstrates its

superior performance in testing hypothesis of independence. We return to

a consideration of sample-based metrics when we consider Yule's work on

partial correlations in section 5.

4. Kendall

Kendall (1946, p.145) devotes a section of his chapter of Volume II on

regression estimation to a consideration of the �tting of curvilinear regression

lines and comments that: �in general them means of arrays will not lie

exactly on a smooth curve.... Nor do we know a priori what is the degree

of a polynomial which will approximately represent the regression line�. He

then proceeds to assume that the regression line can be approximated by a

polynomial of order p:

Y = a0 + a1X + a2X
2 + ...+ apX

p. (11)

1We are grateful to a reviewer for drawing our attention to this point.
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The problem is to determine the coe�cients of a from the data. In e�ect,

to �nd the values of the a′s that will minimise:

U =
∑

(y − a0 − a1x− ....− apxp)2 (12)

with the sum extending over all sample values.

Di�erentiating with respect to aj, he writes:

∑
(xjy)− a0

∑
xj − a1

∑
xj+1 − ...− ap

∑
xj+p = 0, (13)

with similar equations for j = 0, ...p. He then writes the moments without

primes, for the sake of simplicity, and lets µj represent the jth moment of

x, µj1 the bivariate moment
∑

(xjy), and writes:

a0µ0 + a1µ1 + ...+ apµp = µ01

a0µ0 + a1µ2 + ...+ apµp+1 = µ11

.....

a0µp + a1µp+1 + ...+ apµ2p = µp1

}
(14)

writing

4(p) =

∣∣∣∣∣
µ0 µ1 ....µp

µ0 µ2 ....µp+1

....

µ0 µp+1 ....µ2p

∣∣∣∣∣ (15)

he then writes4(p)
j for the determinant obtained by substituting the product

moments µ01....µp1 for the j + 1th column. He obtains, as the solution to
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(13),

aj =
4(p)
j

4(p)
. (16)

Kendall (1946, p.146), notes that if the distribution function of the x′s is

G(x),we have for 4(p) :

4(p) =

∫ ∫
...

∫ ∣∣∣∣∣
1 x0 x20... xp0

x1 x21 x31... xp+1
1

. . .... .

xpp xp+1
p xp+2

p x2pp

∣∣∣∣∣dG0dG1...dGp, (17)

or if:

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x0 ... xp0

1 x1 ... xp1

. . ... ′

1 xp ... xpp

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (18)

4(p) =

∫ ∫
....

∫
D2dG0dG1...dGp.

Kendall then permutes the su�xes of the x′s in all possible ways and sums

the (p+1)! resultants to obtain, by means of the de�nition of a determinant:

(p+ 1)!4p =

∫ ∫
...

∫
D2dG0dG1...dGp..., (19)

and concludes that 4(p) is essentially positive.



16

From equations (17) and (13) it can be seen that the regression line can

be written as:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Y 1 X... Xp

µ01 µ0 µ1... µp

µ11 µ1 µ2... µp

. . . .

µp1 µp µp+1... µ2p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (20)

This provides a formal solution to the problem and the moments µ can be

obtained by observation, while equation (19) provides the regression line.

An alternative approach can yield the same solution. If it is assumed

that the regression line is a parabolic curve of order p, then the coe�cients

may be obtained by the principle of moments. The lower moments could be

obtained by:

∑
(xjy) =

∑
xj(a0 + a1x+ ...+ apx

p),

as far as was necessary to determine the a′s, an approach which leads back

to equation (15).

The only drawback is that we have no prior knowledge of the appropriate

polynomial p required to �t the curve to the data. The only course of action

is to �t curves of order 1, 2, 3, ... until we reach a point where adding further

terms does not improve the �t. To avoid the problem of having to recalculate

the determinant arithmetic every time we add a new term, we can consider
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then regression line in the following form:

Y = b0P0 + b1P1 + ...+ bpPp, (21)

where the Ps are polynomials in X, Pj being the degree of j. The Ps are

determined so that:

∑
(PjPk) = 0, j 6= k, (22)

with the summation extending over observed values.

The minimization of:

∑
(y − b0P0 − b1P1 − ...bpPp)2, (23)

produces equations such as:

∑
(yPj)− b0

∑
(P0Pj)− ...− bp

∑
(PpPj) = 0,

and, by virtue of the orthogonal relations in equation (21), this reduces to:

∑
(yPj)− bj

∑
(P 2

j ) = 0. (24)

It follows that bj is determined by Pj alone, and if a curve has been �tted

of order p, and we wish to explore futher and add a further term bp+1Pp+1,the

coe�cients b0, ..., bp, found from equation (23) remain unchanged.

Kendall (1946, p.147) further adds that the use of the orthogonal polynomials
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leads to a very convenient way of determining step by step, the goodness of

�t of the regression.

We have:

U =
∑

(y − b0P0 − ...bpPp)2

=
∑

(y2)− 2b0
∑

(yP0)− ...− 2bp
∑

(yPp) + b20
∑

(P 2
0 ) + ...+ b2p

∑
(P 2

p ).

Yet equation (23) shows that we can express
∑

(yPj) in terms of
∑

(P 2
j ), so

that:

U =
∑

(y2)− b20
∑

(P 2
0 )− ...− b2P

∑
(P 2

P ). (25)

This means that the e�ect of any term bjPj is to reduce U by b2j
∑

(P 2
j ).

It follows that if any additional term bpPp does not signi�cantly reduce U ,

it is redundant in terms of representing a regression line by a polynomial.

This is exactly the approach typically taken in econometric software in the

implementation of the Ramsey (1969) 'RESET' test.

Kendall (1946, p. 149) demonstrates in the explicit case of polynomials,

(taking µ1 = 0, µ2 = 1), that:

P0 = 1. (26)
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P1 =

∣∣∣∣∣∣∣
1 0

1 X

∣∣∣∣∣∣∣
1

= X. (27)

p2 =

∣∣∣∣∣∣∣∣∣∣
1 0 1

0 1 µ3

1 X X2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣∣
= X2 − µ3X − 1 (28)

P3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 µ3

0 1 µ3 µ4

1 µ3 µ4 µ5

1 X X2 X3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0 1

0 1 µ3

1 µ3 µ4

∣∣∣∣∣∣∣∣∣∣
=

1

µ4 − µ2
3 − 1

{(µ4 − µ2
3 − 1)X3 − (µ5 − µ4µ3 − µ3)X

2

+(µ3µ5 − µ2
4 + µ4 − µ2

3)X + (µ5 − 2µ4µ3 + µ3)}, (29)

and so on. In the case where the population is normal:
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P1 = X

P2 = X2 − 1

P3 = X3 − 3X,

the polynomials reduce to the Tchebyche�-Hermite functions which produce

an orthogonal system in the normal case.

In his work on partial correlation, Kendall (1943, p.385, notes and references),

acknowledges the importance of Yule: �the theory of partial correlation is

mainly due to Yule (1909)�. Yule's formulation of the theory of partial

correlation is considered in the next section.

5. Yule's formal analysis of partial correlation

The following discussion draws heavily on Aldrich (1998, p. 61), who

comments on contributions by Gauss (1809, 1811), remarking that the process

survives as Gaussian elimination without the associated notation, and that

it did not enter the Pearson-Fisher mainstream of 20th Century statistics.

He also notes the importance of a second scheme, namely correlation, that

was introduced nearly a century later Yule (1909, p. 722), who saw it as 'an

application to the purposes of statistical investigation' of least squares.

Aldrich (1998) suggests that Yule's notation was designed to improve

on Karl Pearson's correlation notation that was used by Yule in his early

work on the theory of partial and multiple correlation. For inference theory,

Yule drew on Pearson (1896), and Pearson and Filon (1898). Its relation

to Bayesian analysis is discussed in Aldrich (1997). Aldrich (1995) suggests
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that Yule's original system (1897, pp. 832-3) and presentation of partial

correlation is based on a pair of lines �tted by least squares, written using

deviations from the mean:

x1 = b12x2 + b13x3

x2 = b21x1 + b23x3

Yule de�ned ρ12, as being the net, or partial correlation, between x1 and

x2 with x3 held constant, as:

ρ12 =
√
b12b21, (30)

in an analogy of the relationship between the total correlation and the total

regressions. The use of the above notation does not indicate which variable

is being held constant.

Aldrich (1998, p.67) points out that Yule de�ned the partial correlations

in terms of the slopes derived from least squares estimation, but used the

normal equations rather than procedures from the least squares literature:

S(x1x2) = b12S(x22) + b13S(x2x3)

S(x1x3) = b13S(x2x3) + b13S(x23).

Yule then re-wrote the equations in terms of sample correlation coe�cients

ρ12, ..., etc, and sample standard deviations σ1, ..., and so on:
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r12σ1 = b12σ2 + b13r23σ3

r13σ1 = b12r23σ2 + b13σ3.

These could be solved for b12, for example, as:

b12 =
r12 − r13r23

(1− r223)
· σ1
σ2
. (31)

Yule then used equations (21) and (20) and the corresponding formula

for b21 to derive the following equation:

ρ12 =
r12 − r13r23√

(1 = r213)(1− r223)
. (32)

He was aware that the expression could become quite complex if there were

a number of variables included as explanators in a regression equation.

Yule subsequently (1907, p. 182) developed his notation further, noting

that: �the systems of notation hitherto used by writers on the theory of

correlation are somewhat unsatisfactory when many variables are involved.

In the present paper a new notation is proposed which is simple, de�nite, and

quite general, thus very greatly facilitating the treatment of the subject�.

In equation (31) ρ12, is replaced by r12.3, giving:

r12.34...n =
r12.4...n − r13.4..nr23.4..n√
(1− r213.4..n)(1− r223.4..n)

, (33)

where r12.34...n is the partial correlation of x1 and x2 given x3, ....xn, and so

on.
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Yule (1907, p.184) suggests that: �this result is of some importance as

regards the interpretation of partial correlations and regressions. In the case

of normal correlation there is no di�culty in assigning a meaning to these

constants, as the regression is strictly linear, and the partial correlations and

regressions are the same for all types of the variables. But in the general

case this is not so..�

This caution concerning the interpretation of partial correlation informed

Yule's analysis of causation. Aldrich (1995, p. 369) suggests that Yule

summarised his view in his 1911 work introducing the theory of statistics.

Yule opined that when an analysis of an association leads to the presumption

of a direct causal relation when it does not exist, it is termed 'misleading'.

This analysis was later taken up by Simon (1954, p. 467) in his investigation

of 'spurious' correlation.

Yule's approach to partial correlation can be viewed as a sample based

approach. Zhang (2008) proposed a quotient correlation which he de�ned

as an alternative to Pearson's correlation and as being more intuitive and

�exible in cases where the tail behavior of data is important. He suggests

that it measures nonlinear dependence where the regular correlation coe�cient

is generally not applicable and is a sample-based alternative to the Pearson

correlation. Zhang at al. (2017) further explore the theoretical properties of

the tail correlation coe�cient (TQCC), which they proposed for measuring

tail dependence between two random variables.
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6. Renyi Dependence: De�nitions and Notations

Renyi (1959) developed some fundamental properties capable of classifying

measures of dependence. He suggests that [Ω,ð, P ] be a probability space,

that is, Ω an arbitrary non-empty set whose elements will be denoted by ω, ð,

a σ-algebra of subsets of Ω whose elements will be denoted by capital letters

A,B,C, .., and P = P (A), a probability measure on ð. He denotes random

variables on [Ω, ð, P ], that is real functions de�ned on Ω and measurable

with respect to ð, by Greek letters ξ, η, ... If ξ is a random variable, we

denote byM(ξ) its mean value and by D2(ξ) its variance. IfM(ξ) and D(ξ)

exist and D(ξ) > 0, he de�nes:

ξ∗ =
ξ −M(ξ)

D(ξ)
, (34)

and calls the transformation by which ξ∗ is obtained from ξ the standardization

of ξ. If ξ is an arbitrary random variable, let ðξ denote the least σ-algebra of

subsets of Ω with respect to which ξ is measurable. If η is another random

variable with �nite mean value, he denotes byM(η | ξ) the conditional mean

value of η with respect to a given value of ξ. M(η | ξ) is a random variable,

measurable with respect to ðξ and, is such that, for any A ∈ ðξ, we have:

∫
A

M(η | ξ)dP =

∫
A

ηdP. (35)

Of course, M(η | ξ), is unique only if we consider two random variables

which are equal with probability 1 to be identical. Renyi (1959) takes this for
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granted in his subsequent analysis. He then uses two well-known properties

of conditional mean values:

M(M(η | ξ)) = M(η) (36)

and:

M(g(ξ)η | ξ) = g(ξ)M(η | ξ), (37)

if g(x) is a Borel-measurable real function of the real variable x. The curve

y = M(η | ξ = x) is called the regression curve of η on ξ.

We shall denote the joint distribution of two random variables ξ and η

by Qξ,η, that is, we put for any Borel subset C of the (x, y)-plane:

Qξ,η(C) = P ((ξ, η) ∈ C),

where Qξ,η(C) denotes the set of those ω ∈ Ω for which the point with the

coordinates ξ(ω), η(ω) belongs to C. We denote by Qξ∗η the direct product

of the distributions of ξ and η, that is, we put for any two Borel subsets A

and B of the real line:

Qξ∗η(A ∗B) = P (ξ ∈ A)P (η ∈ B),

where A ∗ B denotes the direct product of the sets A and B, that is, the

set of all points (x, y) for which x ∈ A and y ∈ B. The de�nition of Qξ∗η is

extended to any Borel subset C of the (x, y)-plane.
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6.1. Fundamental Properties of Measures of Dependence

Renyi (1959) then proceeds to consider the fundamental properties of measures

of dependence and suggests we let ξ and η be random variables on a probability

space [Ω, ð, P ], neither of them being constant with probability 1. A common

problem in the application of statistics is the need to characterize by a

numerical value the strength of dependence between ξ and η. He suggests it

is natural to choose a range between [0, 1] and to make the value 1 correspond

to strict dependence and 0 to independence. Using the notation above,

Renyi (1959), establishes the following postulates in relation to measures of

dependence δ(ε, η):

• A) δ(ε, η) is de�ned for any pair of random variables ε and η, neither

of them being constant with probability 1.

• B) δ(ε, η) = δ(η, ε).

• C) 0 ≤ δ(ε, η) ≤ 1.

• D) δ(ε, η) = 0, if ε and η are independent.

• E) δ(ε, η) = 1 if there is strict dependence between ε and η, that is,

either ε = g(η) or η = f(ε), where g(x) and f(x) are Borel-measurable

functions.

• F) If the Borel-measurable functions f(x) and g(x) map the real axis

in a one-to-one way onto itself, δ(f(ε)g(η)) = δ(ε, η).
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• G) If the joint distribution of ε and η is normal, then δ(ε, η) =|

R(ε, η) |, where R(ε, η) is the correlation coe�cient of ε and η.

Renyi (1959) proceeds to consider some individual measures of dependence

in terms of these properties:

1. Correlation Coe�cient. The correlation coe�cient R(ε, η) is de�ned,

provided that D(ε) and D(η) are �nite and positive, by:

R(ε, η) =
M(εη)−M(ε)M(η)

D(ε)D(η)
= M(ε∗, η∗). (38)

It has the range [-1,+1], so only its absolute value meets property C. Its

absolute value also conforms to properties D and G, but not to the others.

7. Doksum and Samarov's Non-parametric Estimation of Global

Functionals

Doksum and Samarov (1995) adopt a nonparametric regression setting

and assess the asymptotic distributions of estimators of global integral functionals

of the regression surface. They apply their results to the problem of obtaining

reliable estimators for the nonparametric coe�cient of determination. This

coe�cient, which is also called Pearson's correlation ratio, gives the fraction

of the total variability of a response that can be explained by a given set of

covariates. They show it can be used to construct measures of nonlinearity

of regression and relative importance of subsets of regressors, and to assess

the validity of other model restrictions.
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Doksum and Samarov (1995) suggested that, for regression experiments

where the relationship between a random covariate vector X and a response

variable Y does not necessarily follow either a linear or other speci�ed

parametric model, a natural measure of the strength of the relationship

between X and Y is Pearson's correlation ratio:

η2 =
V ar(m(X))

V ar(Y )
, (39)

where m(x) = E(Y | X = x), X ∈ Rd, Y ∈ R1. The correlation ratio η2 is

based on the ANOVA decomposition:

V ar(Y ) = V ar(m(X)) + E(σ2(X)), (40)

where σ2(x) = V ar(Y | X = x), and thus gives the fraction of the variability

of Y which is explained with the best predictor based on X, m(X). This can

be interpreted as a nonparametric coe�cient of determination or nonparametric

R-squared. It can also be de�ned via the extremal correlation property:

η2 = Corr2(m(X), Y ) = sup
g
Corr2(g(X), Y ), (41)

where the supremum is taken over all real-valued functions g(X) with �nite

second moments. Equation (39) can be proved using the iterated expectation

property and the Cauchy-Schwarz inequality.

The quantity η2 can also be interpreted in terms of signal-to-noise ratio,

which is usually de�ned as the variability (or energy) of the signal X over
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that of the noise, e = Y −m(X):

signal

noise
=

η2

1− η2
.

Doksum and Samarov (1995) temporarily restrict attention to the case

d = dim(X) = 1, and note that η2 = η2xy, is an asymmetric measure. They

suggest that it is possible that η2xy = 1, while η2yx < 1. Asymmetry of η2

re�ects the fact that it is a regression rather than a correlation measure of

association. As such, it avoids some of the �pathologies� of ACE and the

maximum correlation coe�cient [see Renyi (1959), Breiman and Friedman

(1985) and Buja (1990)].

The quantity η2 is not a �strong� measure of association: while independence

of X and Y clearly implies η2 = 0; even max(η2xy, η
2
yx) = 0 does not imply

that X and Y are independent. In fact, it is possible that max(η2xy, η
2
yx) = 0

while X and Y are functionally dependent, and they consider a uniform

distribution on the unit circumference. They emphasize that X and Y may

be dependent, though not through the conditional means, but in many other

ways. On the other hand, if Y = m(X)+ε withX and ε independent, η2 = 0

is equivalent to the independence of X and Y .

They suggest that, in the nonparametric setup, estimates of the correlation

ratio η2 are quite sensitive to values of X near the boundary of its support

SX . By introducing a weight function, ω(X), which is equal to 1 in the

central part of SX , and is zero near the boundary of SX , they obtain a

more �robust� measure that focuses on the explanatory power of X without
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being too sensitive to values near the boundary. Doksum and Samarov

(1995) consider the weighted functional η2ω, which they estimate using kernel

regressions.

The above considerations are related to the issues addressed by Zheng et

al. (2012) in their development of the GMC and their consideration of its

appplication in tests of a form of Granger causality, as considered in section

9.

Other potential complications in both the study of dependency and the

relations of cause and e�ect, are considered in the next section.

8. Yule-Simpson e�ect

The Yule-Simpson e�ect refers to a phenomenon in which a trend appears

in several di�erent groups of data, but disappears or reverses when these

groups are combined. In discussing the challenges and opportunities provided

by the emergence of 'big data', Nussbaum (2018, p. 489) mentions that: �the

second concern is that at the heart of data analytics is the massive study

of correlations. As we well know these correlations do not imply causation,

so we can have misleading conclusions. We can also run into situations like

Simpsons paradox and simply get the wrong answers.�

Although Simpson (1951) re-drew attention to this issue, the concept

had been covered earlier by Pearson et al. (1899) and Yule (1903). Pearson

et al. (1899) considered the inheritance of fertility in man, and of fecundity

in thoroughbred racehorses.

Yule (1903, p. 127), in the context of discussing inherited traits, states
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that: �the tests for independence are by no means simple when the number of

attributes is more than two. Under what circumstances should we say that

a series of attributes ABCD... were completely independent? I believe not a

few statisticians would reply at once 'if the chance of �nding them together

were equal to the product of the chances of �nding them separately,' yet

such a reply would be in error. The mere result:

(A,B,C,D, ....

N
=

(A)

N
.
(B)

N
.
(C)

N
.
(D)

N
, (42)

where N is the total number, does not in general give any information as to

the independence or otherwise of the attributes concerned. If the attributes

are known to be completely independent then certainly the relation (9) holds

good, but the converse is not true�.

From the physical point of view, complete independence can only be

said to subsist for a series of attributes ABCD... within a given universe

when every pair of such attributes exhibits independence not only within

the universe at large, but also in every sub-universe speci�ed by one or more

of the remaining attributes of the series, or their contraries.

This discussion leads to consideration of the role of causality in the

context of time, as considered in section 10.

9. GMC in time series

Vinod (2015) applies the concept of GMC to analyse some concepts in

development economics. He reminds the reader that GMC can be interpreted
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in terms of kernel causality, GMC(Y | X), is the coe�cient of determination,

R2, of the Nadaraya-Watson nonparametric kernel regression:

y = g(X) + ε = E(Y | X) + ε, (43)

where g(X) is a nonparametric, unspeci�ed (nonlinear) function. Interchanging

X and Y , we obtain the other GMC(X | Y ) de�ned as the R2 of the Kernel

regression:

X = g
′
(Y ) + ε

′
= E(X | Y ) + ε

′. (44)

Vinod (2017) de�nes δ = GMC(X | Y ) − GMC(X | Y ) as the di�erence

of two population R2 values. When δ < 0, we know that X better predicts

Y than vice-versa. Hence, we de�ne X kernel causes Y provided the true

unknown δ < 0. Its estimate δ
′
can be readily computed by means of a

regression.

Zheng et al. (2012) demonstrate that GMC can lead to a more re�ned

version of the concept of Granger causality (see Granger (1969)). They

assume an order one bivariate linear autoregressive model, wherein Yt Granger

causes Xt if:

E[{Xt − E(Xt | Xt−1)}2] > E[{Xt − E(Xt | Xt−1, Yt−1)}2], (45)

which suggests that Xt can be better predicted using the histories of both

Xt and Yt than using the history of Xt alone. Similarly, Xt Granger causes
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Yt if:

E[{Yt − E(Yt | Yt−1)}2] > E[{Yt − E(Yt | Y t− 1, Xt−1)}2]. (46)

They use the fact E(V ar(Xt | Xt−1)) = E[{Xt − E(Xt | Xt−1}2], and

E[{E(Xt | Xt−1) − E(Xt | Xt−1, Yt−1)}2] = E[{Xt − E(Xt | Xt−1)}2] −

E[{Xt − E(Xt | Xt−1, Yt−1)}2],

which suggests that equation (44) is equivalent to:

1− E[{Xt − E(Xt | Xt−1, Yt−1)}2]
E(V ar(Xt | Xt−1))

> 0. (47)

In the same way, (45) is equivalent to:

1− E[{Yt − E(Yt | Yt−1, Xt−1)}2]
E(V ar(Yt | Yt−1))

> 0. (48)

When both (44) and (45) are true, there is a feedback system.

Suppose that {X,t, Yt}, Yt > 0 is a bivariate stationary time series. Zheng

et al. (2012) de�ne Granger causality generalized measures of correlation as:

GcGMC(Xt | Ft−1) = 1− E[{Xt− | Xt−1, Xt−1, ..., Yt−1, Yt−2, ...., )}2]
E(V ar(Xt | Xt−1, Xt−2, ....))

,

(49)

GcGMC(Yt | Ft−1) = 1− E[{Yt− | Yt−1, Yt−1, ..., Xt−1, Xt−2, ...., )}2]
E(V ar(Yt | Yt−1, Yt−2, ....))

, (50)
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where Ft−1 = σ(Xt−1, Xt−2, ..., Yt−1, Yt−2, ....).

Zheng et al. (2012) suggest the following:

• GcGMC(Xt | Ft−1) > 0, Y Granger causes X.

• GcGMC(Yt | Ft−1) > 0, X Granger causes Y.

• GcGMC(Xt | Ft−1) > 0 and GcGMC(Yt | Ft−1) > 0, there is a

feedback system.

• GcGMC(Xt | Ft−1) > GcGMC(Yt | Ft−1), X is more in�uential than

Y

• GcGMC(Yt | Ft−1) > GcGMC(Xt | Ft−1), Y is more in�uential than

X.

10. GMC and causation

The potential use of GMC as a tool for exploring Granger causality leads

naturally to consideration of the issues related to tests of causality. The

classical philosopher, economist and historian, David Hume (1739, �SECT.

XV. RULES BY WHICH TO JUDGE OF CAUSES AND EFFECTS�), had

a great in�uence on the later development of the treatment of causality

in economics. Hume discusses cause and e�ect in his 'Treatise of Human

Nature', where he sets out eight propositions, four of which are given below:

�(1) The cause and e�ect must be contiguous in space and time.

(2) The cause must be prior to the e�ect.
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(3) There must be a constant union betwixt the cause and e�ect. It is

chie�y this quality, that constitutes the relation.

(4) The same cause always produces the same e�ect, and the same

e�ect never arises but from the same cause. This principle we derive from

experience, and is the source of most of our philosophical reasonings....�.

Hume argues that our idea of necessary connection, which he concedes

is the most characteristic element of causality, can arise only from our

experience of the constant conjunction of particular temporal sequences.

This suggests that causality has a very weak foundation.

Granger causality is an example of the modern probabilistic approach

to causality, which is a natural successor to Hume. While Hume required

constant conjunction of cause and e�ect, probabilistic approaches are content

to identify cause with a factor that raises the probability of the e�ect: A

causes B if P (B | A) > P (B). The asymmetry of causality is secured by

requiring the cause (A) to occur before the e�ect (B). Granger causality

has been criticised because it is atheoretical.

A more inferential approach to the study of causality has recently been

provided by the development of graph-theoretic approaches (see Pearl (2000,

2010)). This has been incorporated in dependence modelling via the application

of copulas. Accounts of copula theory are available in Joe (1997) and

Nelsen (2006). Hierarchical, copula-based structures have recently been

used in some new developments in multivariate modelling. Notable among

these structures is the pair-copula construction (PCC). Joe (1996) originally

proposed PCC, and further exploration of its properties has been undertaken
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by Bedford and Cooke (2001, 2002) and Kurowicka and Cooke (2006). Aas

et al. (2009) provided key inferential insights which have stimulated the use

of the PCC in various applications, (see, for example, Chollete et al. (2009),

Berg and Aas (2009), and Allen et al. (2013)).

Sklar (1959) provides the basic theorem describing the role of copulas for

dependence in statistics, providing the link between multivariate distribution

functions and their univariate margins. The argument proceeds as follows:

let F be a d - dimensional distribution function with margins F1, ........Fd.

Then there exists a copula C such that, for all x = (x1, ......, xd)
′ ∈ (R ∪ {∞, −∞})d,

F (x) = C(F1(x1), ......., Fd(xd)). (51)

C is unique if F1, ....., Fd are continuous. Conversely, if C is a copula and

F1, ....., Fd are distribution functions, then the function F de�ned by (1)

is a joint distribution with margins F1, ....., Fd . In particular, C can be

interpreted as the distribution function of a d -dimensional random variable

on [0, 1]d.

We can speak generally of the copula of continuous random variablesX =

(X1, ....Xd) ∼ F . The problem in practical applications is the identi�cation

of the appropriate copula.

Standard multivariate copulas, such as the multivariate Gaussian or

Student-t, as well as exchangeable Archimedean copulas, lack the �exibility

of accurately modelling the dependence among larger numbers of variables.

Generalizations of these o�er some improvement, but typically become rather
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intricate in their structure, and hence exhibit other limitations, such as

parameter restrictions. Vine copulas do not su�er from any of these problems.

Initially proposed by Joe (1996), and developed in greater detail in

Bedford and Cooke (2001, 2002), vines are a �exible graphical model for

describing multivariate copulas built up using a cascade of bivariate copulas,

so-called pair-copulas. Their statistical breakthrough was due to Aas, Czado,

Frigessi, and Bakken (2009), who described statistical inference techniques

for the two classes of canonical C-vines and D-vines. These belong to

a general class of Regular Vines, or R-vines which can be depicted in a

graphical theoretic model to determine which pairs are included in a pair-

copula decomposition. Therefore, a vine is a graphical tool for labelling

constraints in high-dimensional distributions.

A regular vine is a special case for which all constraints are two-dimensional

or conditional two-dimensional. Regular vines generalize trees, and are

themselves specializations of Cantor trees. Combined with copulas, regular

vines have proven to be a �exible tool in high-dimensional dependence

modelling. Copulas are multivariate distributions with uniform univariate

margins. Representing a joint distribution as univariate margins plus copulas

allows the separation of the problems of estimating univariate distributions

from the problems of estimating dependence.

However, a drawback of a high dimensional vine copula is that after it has

been constructed, one can integrate out the redundant variables to obtain

a joint copula of the two variables of interest. Nevertheless, the resulting
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copula might be very di�erent from the one constructed directly from a

chosen copula family, in e�ect its uniqueness can not be guaranteed. Zheng

et al. (2012, p. 1245) demonstrate that: �the bivariate GumbelHougaard

copula is widely used in many applications, especially in �nance and insurance.

It is easy to show that the GMCs of a pair of random variables following

a bivariate GumbelHougaard copula are identical�. This is not always the

case though, as demonstrated by Zhang (2009), who showed that the three-

sectional copula performed as well as the Gumbel-Hougaard copula in modelling

bivariate extreme dependence, yet the three sectional copula was able to

account for both symmetry and asymmetry in explained variances by varying

coe�cient values.

However, the focus in the development of the GMC is on the relationship

between the means of two distributions, as captured by regression analysis.

Graphical approaches and the application of copulas can be applied to

capture dependencies across the entirety of two distributions. A more direct

parallel between capturing dependencies via regression analysis would be

quantile regression, as developed by Koenker and Bassett (1978), (for an

extensive treatment see Koenker (2005)).

11. Conclusion

Zheng et al. (2012) provided a convincing explanation of the properties

of the measure they refer to as a generalized measure of correlation (GMC).

This comment draws attention to the fact that some of the properties of

their suggested metric were explored previously by Yule (1897) in analysing
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skew correlation 115 years earlier, and in his subsequent work on partial

correlation. Other antecedents presented for consideration include Renyi's

(1959) consideration of dependence, and Doksum and Samarov's (1995) work

on global functionals. This also raises the issue of the Yule-Simpson paradox

and methods of confronting it.

The fact that the GMC metric also proposes a form of non-linear Granger

causality led to considerations of causality, graphical analysis and copulas,

as alternative methods of capturing dependencies, together with the causal

analytical framework provided by Pearl (2000, 2010).

Acknowledgements

The authors are most grateful to the editors and three reviewers for very

helpful comments and suggestions. The second author wishes to acknowledge

the �nancial support of the Australian Research Council and the Ministry

of Science and Technology (MOST), Taiwan.

References

[1] Aas, K., Czado, C., Frigessi, A., and H. Bakken (2009), Pair-copula

constructions of multiple dependence, Insurance, Mathematics and

Economics, 44:182�198.

[2] Aldrich, J. (1995), Correlations genuine and spurious in Pearson and

Yule, Statistical Science, 10 (4): 364-376.



REFERENCES 40

[3] Aldrich, J. (1997), R.A. Fisher and the making of Maximum Likelihood

1912-1922, Statistical Science, 12 (3): 162-176.

[4] Aldrich, J. (1998), Doing Least Squares: perspectives from Gauss and

Yule, International Statistical Review, 66(1): 61-81.

[5] Allen, D.E and V. Hooper (2018), Generalized correlation measures

of causality and forecasts of the VIX using non-linear models,

Sustainability, 10(8: 2695), 1-15.

[6] Allen, D.E., A. Ashraf, M. McAleer, R.J. Powell, and A.K. Singh (2013),

Financial dependence analysis: Applications of vine copulas, Statistica

Neerlandica, 87, 4, 403-435.

[7] Bedford, T. and R. M. Cooke (2001), Probability density decomposition

for conditionally dependent random variables modeled by vines, Annals

of Mathematics and Articial Intelligence, 32, 245-268.

[8] Bedford, T. and R. M. Cooke (2002), Vines - a new graphical model for

dependent random variables, Annals of Statistics, 30, 1031-1068.

[9] Berg, D. and K. Aas (2009), Models for construction of higher-

dimensional dependence: A comparison study, European Journal of

Finance, 15:639�659.

[10] Bravais, A. (1846), Analyse mathématique sur les probabilités des

erreurs de situation d'un point, Mémoires présentés par divers savants

à l'Académie royale des sciences de l'Institut de France, 9, 255-332.



REFERENCES 41

[11] Breiman, L. and J. Friedman (1985), Estimating optimal

transformations for multiple regression and correlation, Journal

of the American Statistical Association, 80 580-598.

[12] Buja, A. (1990), Remarks on functional canonical variables, alternating

least squares methods and ACE, Annals of Statistics, 18 1032-1069.

[13] Chen, M., Y.M. Lian, Z. Chen, and Z. Zhang, (2017), Sure explained

variability and independence screening, Journal of Nonparametric

Statistics, 29, 849-883.

[14] Chollete, L., A. Heinen, and A. Valdesogo (2009), Modeling

international �nancial returns with a multivariate regime switching

copula, Journal of Financial Econometrics, 7:437�480.

[15] Denis, D.J. (2000), The Origins of Correlation and Regression: Francis

Galton or Auguste Bravais and the Error Theorists?, Paper presented at

the 61st Annual Convention of the Canadian Psychological Association,

Ottawa, Canada, 29 June, 2000.

[16] Doksum, K, and A. Samarov (1995), Nonparametric estimation of

global functionals and a measure of the explanatory power of covariates

in regression, Annals of Statistics, 23(5), 1443-1473.

[17] Gauss, C.E (1809), Theoria Motus Corporum Coelestium. English

translation by C.H. Davis, reprinted (1963), Dover, N York.

[18] Gauss, C.E (1811), Disquisitio de Elementis Ellipticis Palladis. English



REFERENCES 42

translation of extract in pp. 148-155 of Trotter, H. EF (1957). Gauss's

Work (1803-26) on the Theory of Least Squares, Technical Report

5, Statistical Techniques Research Group, Princeton University. A

translation of Mithodes des Moindres CarrIs, the authorised French

translation of Gauss's writings on least squares by J. Bertrand (1855),

Paris: Mallet-Bachelier.

[19] Granger, C. (1969), Investigating causal relations by econometric

methods and cross-spectral methods. Econometrica, 34, 424-438.

[20] Hume, D. (1739), A Treatise of Human Nature, reprinted Oxford,

Clarendon Press, (1896).

[21] Joe, H. (1996), Families of m-variate distributions with given margins

and m(m- 1)/2 bivariate dependence parameters, In L. Rüschendorf

and B. Schweizer and M. D. Taylor, editor, Distributions with Fixed

Marginals and Related Topics.

[22] Joe, H. (1997), Multivariate Models and Dependence Concepts,

Chapman & Hall, London.

[23] Kendall, M.G. (1943), The Advanced Theory of Statistics, Charles

Gri�n, London.

[24] Kendall, M.G. (1946), The Advanced Theory of Statistics, Volume II,

Charles Gri�n, London.



REFERENCES 43

[25] Kendall, M. and A. Stuart (1979), The Advanced Theory of Statistics:

Inference and Relationship, Hodder Arnold, London.

[26] Koenker, R. and G. Bassett (1978), Regression Quantiles,

Econometrica, 46(1) 33-50.

[27] Koenker, R. (2005), Quantile Regression, Econometric Society

Monograph Series, Cambridge University Press.

[28] Kurowicka D. and R.M. Cooke (2003), A parametrization of positive

de�nite matrices in terms of partial correlation vines, Linear Algebra

and its Applications, 372: 225�251.

[29] Nelsen, R. (2006), An Introduction to Copulas, Springer, New York,

2nd edition

[30] Nussbaum, B.D. (2018), Statistics: essential now more than ever,

Journal of the American Statistical Association, 113:522, 489-493.

[31] Pearl, J. (2000), Causality: Models, Reasoning, and Inference,

Cambridge: Cambridge University Press.

[32] Pearl, J. (2010), The Foundations Of Causal Inference, Sociological

Methodology, 40, 75�149.

[33] Pearson, K. (1896), Mathematical Contributions to the Theory

of Evolution. III. Regression, Heredity and Panmix, Philosophical

Transactions of the Royal Society A, 187, 253-318.



REFERENCES 44

[34] Pearson, K. and L.N.G. Filon, (1898), Mathematical Contributions to

the Theory of Evolution IV. On the Probable Error frequency Constants

and on the In�uence of Random Selection on Variation and Correlation,

Philosophical Transactions of the Royal Society A, 191, 229-311.

[35] Pearson, K, A. Lee, and L.Bramley-Moore (1899), Genetic

(reproductive) selection: Inheritance of fertility in man, and of

fecundity in thoroughbred racehorses, Philosophical Transactions of the

Royal Society Series A, 192: 257�330.

[36] Ramsey, J.B. (1969) Tests for speci�cation errors in classical Linear

Least Squares Regression analysis, Journal of the Royal Statistical

Society. Series B, 31(2): 350-371.

[37] A. Renyi (1959), On measures of dependence, Acta Mathematica

Academiae Scientiarum Hungarica, 10(3-4) 441-451.

[38] Simon, H.A. (1954), Spurious correlation: A causal interpretation,

Journal of the American Statistical Association, 49(267): 467-479.

[39] Simpson, E. H. (1951), The interpretation of interaction in contingency

tables, Journal of the Royal Statistical Society, Series B, 13: 238�241

[40] Sklar, A. (1959), Fonctions de repartition a n dimensions et leurs

marges, Publications de l'Institut de Statistique de L'Universite de

Paris, 8, 229-231.

[41] Vinod, H.D. (2015), Generalized Correlation and Kernel Causality



REFERENCES 45

with Applications in Development Economics, Communications in

Statistics - Simulation and Computation, accepted Nov. 10, 2015, URL

http://dx.doi.org/10. 1080/

[42] Vinod, H.D. (2019) R Package 'generalCorr', https://CRAN.R-

project.org/package=generalCorr

[43] Yule, G.U. (1897a), On the Signi�cance of Bravais Formulæ for

Regression, in the case of skew correlation, Proceedings of The Royal

Society London, 477-489.

[44] Yule, G.U. (1897b), On the Theory of Correlation, Journal of the Royal

Statistical Society, 60, 812-854.

[45] Yule, G.U. (1900), On the association of attributes in statistics; with

illustrations from the material of the childhood society, &c. Philosphical

Transactions Series A, 194: 257-319.

[46] Yule, G.U. (1903), Notes on the theory of association of attributes in

statistics, Biometrika, 2 (2): 121�134.

[47] Yule, G.U. (1907) On the Theory of Correlation for any Number of

Variables, Treated by a New System of Notation, Proceedings of the

Royal Society of London, Series A, 79, 182-193.

[48] Yule, G.U. (1909), The Applications of the Method of Correlation to

Social and Economic Statistics. Journal of the Royal Statistical Society,

72, 721-730.



REFERENCES 46

[49] Yule, G.U. (1911) An Introduction to the Theory of Statistics, Ist

Edition, Gri�n, London.

[50] Zhang, Z. (2008), Quotient correlation: a sample based alternative to

Pearson's correlation, Annals of Statistics, 36, 1007-1030.

[51] Zhang, Z. (2009), On Approximating Max-Stable Processes and

Constructing Extremal Copula Functions, Statistical Inference for

Stochastic Processes, 12, 89�114.

[52] Zhang, Z., C. Zhang, and Q. Cui, (2017), Random threshold driven

tail dependence measures with application to precipitation analysis,

Statistica Sinica, 27, 685-709.

[53] Zheng, S., N-S, Shi and Z. Zhang (2012), Generalized measures of

correlation for asymmetry, nonlinearity, and beyond, Journal of the

American Statistical Association, 107, 1239-1252.


