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Abstract

This paper features an analysis of volatility spillover e�ects from Australia's major trading partners,
namely, China, Japan, Korea and the United States, for a period running from 1st January 2004
to 30th June 2014. This captures the impact of the Global Financial Crisis (GFC). These markets
are represented by the following major indices: The Shanghai composite and the Hangseng. (in the
case of China, as both China and Hong Kong appear in Australian trade statistics), the S&P500
index, the Nikkei225 and the Kospi index. We apply the Diebold and Yilmaz (2009) Spillover
Index, constructed in a VAR framework, to assess spillovers across these markets in returns and in
volatilities. The analysis con�rms that the US and Hong Kong markets have the greatest in�uence
on the Australian one. We then move to a GARCH framework to apply further analysis and
apply a tri-variate Cholesky-GARCH model to explore the e�ects from the US and Chinese market,
as represented by the Hang Seng Index. We further explore three sample sub-periods, Pre-GFC
2004/1/1/ until 2007/07/08/, GFC 2007/08/09 until 2010/05/07 and Post-GFC 2010/05/10 until
2014/06/20 and analyse the behaviour of time-varying conditional correlations in these sub-periods.
The GARCH analysis re-a�rms the strong in�uence of the Hang Seng Index and the S&P500 Index.

Keywords: Volatility Spillover Index, VAR analysis, Variance Decomposition, Cholesky-GARCH,
JEL Codes: G12, C58.,

1. Introduction

The Global Financial Crisis (GFC) had a major impact on the world's �nancial markets. This
paper examines whether there is evidence of spillovers of volatility from Australia's main trading
partners, namely, China, Japan, Korea and the United States, for a period running from 1st Jan-
uary 2004 to 30th June 2014, to the Australia stock market. The paper features an application of
Diebold and Yilmaz's (2009) Spillover Index model, to assess the impact of the GFC on spillovers
to the Australian market, on both returns and volatility series. This is followed by an application
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of a Cholesky-GARCH trivariate model to directly model the in�uence of both the US and Chinese
markets, as represented by Hong Kong and the Hang Seng Index, not Shanghai and the Shanghai
Composite Index, because the Spillover Index analysis, conducted in a VAR and variance decompo-
sition framework, reveals that these two markets are the most in�uential on the Australian market,
even though they are currently ranked fourth and �fth, in importance, as trading partners.

The recent GFC crisis commenced in 2007 and continued through to the European sovereign
debt crisis. Alan Greenspan (2010) took the view that: �The bubble started to unravel in the
Summer of 2007. But unlike the debt-like de�ation of the earlier dotcom boom, heavy leveraging
set o� serial defaults, culminating in what is likely to be viewed as the most virulent �nancial crisis
ever. The major failure of both private risk management and o�cial regulation was to signi�cantly
misjudge the size of tail risks that were exposed in the aftermath of the Lehman default.�

The U.S. subprime mortgage and credit crisis was characterized by turbulence that spread from
subprime mortgage markets to credit markets more generally, and then to short-term interbank
markets as liquidity evaporated, particularly in structured credit then on to stock markets globally.

Gorton (2010) suggested that the GFC was not particularly di�erent from previous crises except
that, prior to 2007, most investors had never heard of the markets that were involved. Concepts such
as subprime mortgages, asset-backed commercial paper conduits, structured investment vehicles,
credit derivatives, securitization, or repo markets were not common knowledge. Gorton (2010)
suggested that the securitized banking system is a real banking system that is still vulnerable to a
panic. He argued that the crisis, beginning in August 2007, could best be understood as a wholesale
panic involving institutions, where large �nancial �rms, "ran" on other �nancial �rms, making the
system insolvent.

In�uential earlier work on the transmission of shocks across �nancial markets by Forbes and
Rigobon (2001, 2002) queried the nature of contagion, but their arguments, considered below, were
framed within the context of an equilibrium asset pricing model and some strong assumptions. They
suggested that there was little agreement on the nature of contagion and that their de�nition of
contagion involved a signi�cant increase in cross-market linkages after a shock. Furthermore, they
suggested that tests for contagion that do not adjust for heteroscedasticity may suggest that conta-
gion occurred, even when cross-market transmission mechanisms were stable and 'shift-contagion'
did not occur. Their basic argument, which is set out below involves some strong assumptions.

Forbes and Rigobon (2002) assumed x and y are stochastic variables which represented stock
market returns (in di�erent) markets and their returns were related according to the equation:

yt = α+ βxt + εt, (1)

where

E[εt] = 0 (2)

E[ε2t ] = c <∞ (3)

where c is a constant and

E[xtεt] = 0. (4)

They then made further assumptions about the residuals and divided the sample into two groups,
so that the variance of xt is lower in one group (l) and higher in the second (h). One is the sample
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in a normal period whilst the other is the sample in a period of crisis. They assumed α = 0, and
β = 0.2 for both periods. Since E[xtεt] = 0 by assumption, estimates of equation (1) are consistent
for both groups βh = βl.

By construction they suggested that we know that σhxx > σlxx which, then, when combined with
the standard de�nition of beta:

βh =
σhxy
σhxx

=
σlxy
σlxx

= βl, (5)

which implied σhxy > σlxy.
Thus the cross market covariance is higher in the second group and this increase in the cross-

market covariance from that of the �rst group is directly proportional to the increase in the variance
of x.

Meanwhile, according to equation (1), the variance of y is:

σyy = β2σxx + σee. (6)

Since the variance of the residual is positive, the increase in the variance of y across groups, is
less than proportional to the increase in the variance of x. Since the variance of the residuals across
groups is assumed to remain constant over the entire sample, this implies that the increase in the
variance of y across groups is less than proportional to the increase in the variance of x. Therefore,(

σxx
σyy

)h
>

(
σxx
σyy

)l
. (7)

Finally, they substituted equation (5) into the standard de�nition of the correlation coe�cient:

ρ =
σxy
σxσy

= β
σx
σy
, (8)

and, when they combined this with equation (7), they concluded that this implied that ρh > ρl.
However, they have have assumed that a stable form of the capital asset pricing model holds

with no change in betas in periods of turbulence. A further assumption is the absence of het-
eroscedasticity and ARCH e�ects which are well established in the ARCH/GARCH literature, see
for example the survey by Shephard (1992). We return to a consideration of this literature in more
depth in Section 2.3 of the paper. A further limitation of this approach is the absence of dynamics.
Engle (2014) recently modelled commodity prices using dynamic conditional betas.

Bekaert et al., (2014) applied a factor model to predict crisis returns, de�ning unexplained
increases in factor loadings and residual correlations as being indicative of contagion. They reported
evidence of contagion from the United States and the global �nancial sector, with the e�ects being
small. By contrast, they reported evidence of substantial contagion from domestic markets to
individual domestic portfolios, with their severity inversely related to the quality of countries'
economic fundamentals. Fidrmuc and Korhonen (2010), analyzed the transmission of the global
�nancial crisis to business cycles in China and India using GDP data and dynamic correlation
analysis. They reported a signi�cant link between trade ties and dynamic correlations of GDP
growth rates in emerging Asian countries and OECD countries. Cheng, and Glascock (2005),
examined the linkages among three Greater China Economic Area (GCEA) stock markets, including
Mainland China, Hong Kong, and Taiwan, and two developed markets, Japan and the United States.
They found that a random walk model was outpredicted by an autoregressive GARCH model, and
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an ARIMA model, in all three GCEA markets, and that there was no evidence of cointegration
between the markets. Chung et al. (2010), examined the informational role of the TED spread as
perceived credit risk. They applied a Vector Autoregressive (VAR) model, Granger causality tests,
cointegrating Vector Error Correction Model (VECM), to the analysis of the leadership of the US
market with respect to UK, Hong Kong, Japan, Australia, Russia and China markets, during the
crisis, and found evidence of increased interdependence during the crisis. They suggested that the
impact of orthogonalized shocks from the US market, on other global markets, increased by at least
two times during the crisis, and that of the TED spread, even more so. Degiannikis et. al., (2013)
analysed the equity returns from 10 European industrial sector indices and their relationship with
oil price �uctuations and estimated time-varying correlations by means of a Diag-VECH GARCH
model.

Didier et al. (2012), examined the determinants of comovement in stock market returns during
the 2007�2008 crisis. They explored the in�uence of the United States (US), via analysis of the
factors driving the comovement between US stock market returns and stock market returns in 83
countries. Their analysis distinguished between the period before and after the collapse of Lehman
Brothers, and their �ndings indicated that comovement was driven largely by �nancial linkages.
Dooley and Hutchison (2009) explored the transmission of the crisis to the emerging markets. They
suggested that whilst initially these markets were largely shielded from the deleterious e�ects on
world trade �ows, they subsequently had strong e�ects after the Lehmann bankruptcy. Huang et al.
(2000), applied similar causality and cointegration relationships to the stock markets of the United
States, Japan and the South China Growth Triangle (SCGT) region, and reported no evidence of
cointegration amongst these markets, save the Chinese ones of Shanghai and Shenzen. Kotkatvuori-
Örnberg et al. (2013), explored stock market correlations during the �nancial crisis across 50 equity
markets. They measured the value of covariance information using an the augmented DCC model,
and showed that by taking into account the changes in the level of variance in high volatility
periods, the estimates of the conditional covariance were more e�cient in capturing the dynamics
of the stock market's variance. Min and Hwang (2012), also used dynamic correlation analysis of
US �nancial crisis to explore contagion from the US across four OECD countries. They found a
process of increasing correlations (contagion), in the �rst phase of the US �nancial crisis, and an
additional increase of correlations (herding), during the second phase of the US �nancial crisis,
for the UK, Australia and Switzerland. Mun and Brooks (2012) explored the roles of news and
volatility in stock market correlations during the global �nancial crisis. Their results showed that
the majority of the correlations were more strongly explained by volatility than news. Yeh and
Lee (2000), analysed the interaction and volatility asymmetry of unexpected returns in the greater
China stock markets. They suggested that the results, of a near vector autoregressions (VAR) model,
revealed that the Hong Kong stock market played an in�uential role as a regional force amongst
the Taiwan, Shanghai, and Shenzhen B-share stock markets. Paramati et al., (2016) explored
Australia's bilateral trade and stock market linkages in a GARCH and cointegration framework
and reported that the intensity of bilateral trade and investment linkages amongst countries matter
for their stock markets' long-term relationships, but did not include the Hong Kong Stock market
in their study.

There are a number of common themes in this literature. The global studies that include
the US suggest that it has a major in�uence in the transmission of shocks to both developed and
undeveloped markets. Some studies are based on the application of equilibrium asset pricing models,
such as Forbes and Rigobon (2002), but these are built on strong assumptions. Furthermore, the
econometric methods, used in these studies, range across a number of time series econometrics
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techniques including cointegration, VAR models, and applications of models nested in the GARCH
framework, including multivariate models such as DCC.

However, also germane to the approach adopted in the current paper, is a recent study by
Diebold and Yilmaz (2009), who formulate and examine precise and separate measures of return
spillovers and volatility spillovers. They base their measurement of return and volatility spillovers
on vector autoregressive (VAR) models, in the broad tradition of Engle et al., (1990). They focus
on variance decompositions, which they argue are well understood and widely calculated. They
use them to aggregate spillover e�ects across markets, which permits the distillation of a wealth
of information into a single spillover measure. VAR models may incorporate a general to speci�c
modelling framework and are relatively un-encombered by underlying assumptions, permitting the
data to speak for itself. We adopt their approach, plus a tri-variate Cholesky-GARCH model
which permits an analysis of the relationships with those markets with the greatest in�uence on
the Australian market, as revealed by the application of their Spillover Index.

Our analysis is therefore focused on the relationship with Australia's main trading partners,
China, Japan, the United States, Hong Kong and Korea, given that both trade �ows and attached
information �ows are likely to have an economic impact, and be re�ected in the behaviour of equity
indices (see for example, Evans and Hnatkovska (2014)).

In this paper we focus on how the GFC impacted on volatility spillovers across the world to the
Australian equity market. Even though the Australian �nancial markets were spared the major
e�ects of the GFC, in terms of distress to major �nancial institutions, the Australian �nancial
market was still impacted by these major global events. The degree to which the Australian market
is in�uenced by extreme events in the US, has implications for portfolio optimization by Australian
investors and fund managers alike, and e�ects the degree to which it is possible to hedge risk during
times of �nancial turbulence. We examine how both return and volatility spillovers and correlations
changed, between the Australian market and the US during the �nancial crisis. We focus on the
impact of the Chinese market in our analyses, given that its is Australia's main trading partner,
together with the in�uence of the US market, given that this it has consistently been shown to have
the greatest impact on other global markets, in the prior studies mentioned, even though it is only
Australia's fourth most signi�cant trading partner.

For our empirical analysis we adopt a time-series framework using variance decompositions and a
GARCH framework, namely, the Diebold and Yilmaz (2009) Spillover Index model and a Cholesky
GARCH model. We preferred this approach as it involves much less in the way of assumptions,
than for example, the Forbes and Rigobon (2002) approach. Economic shocks are likely to in�uence
both the �rst and second moment of a time series of returns. A VaR framework provides the most
general and un-encumbered way of analysing the relationships between sets of time series variables.
Once relationships are estimated, the e�ect of standardised shocks to the system can be explored
using impulse response analysis. This is the basis of the Diebold and Yilmaz (2009) Spill Over
Index Approach. However, shocks are likely have an impact on both the return and the variance
of a return series and their impact is also likely to be auto-correlated. These features are assumed
away by Forbes and Rigobon (2002). However, a GARCH framework permits the exploration of
the impact on the mean of the series, via the conditional mean equation, and on the conditional
variance via the GARCH term, and the model itself is built on the assumption that e�ects are
auto-correlated, as evidenced by the presence of ARCH e�ects.
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2. Research Method

2.1. Data set and econometric models

We wanted to ensure that we captured the relationships with Australia's main trading partners
so we used the Australian Department of Finance and Treasury's o�cial statistics. The top ten
trading partners in 2013 in trade in goods and services in order of importance were China, Japan,
the Republic of Korea, the United States, India, New Zealand, Singapore, Taiwan and the United
Kingdom. (See http://dfat.gov.au/publications/tgs/index.html)

Recent changes in the trend in trade in goods and services from 2001 to 2013, have resulted
in trade with China becoming ever more important, and it overtook trade with Japan as the
major trading partner in 2008-2009. Trade with Korea, particularly in imports, also increased
in importance from 2004 when it overtook trade with the US in relative importance. The �fth
most important trading partner is Hong Kong whose relative importance has not changed over this
period. For the purposes of our analysis we concentrated on the top six trading partners, in terms
of exports, as this re�ects our major trading partners and has implications for export income.

We took a series of major stock market indices representing these six countries; namely the
Shanghai Stock Exchange (SSE) composite index, the Hang Seng Index, the Australian All Ordi-
naries Index, the Nikkei 225 Index, the S&P500 Index and the Kospi Index. The data set includes
daily data for each index from 1st January 2004, until 30th June 2014. The indexes are total market
indexes, based on market capitalizations, and are taken from Datastream standardised in US dollar
terms. Daily returns are calculated as follows:

yit = ln(pit)− ln(pit−1) (9)

The data sets used are shown in Table 1. (We lagged the US S&P 500 index returns by one day
to make them more comparable in time with the Australian and other Asian series).

Country Index

USA S&P500

AUSTRALIA All Ordinaries
CHINA Hang Seng
CHINA Shanghai Stock Exchange Composite
JAPAN Nikkei 225
KOREA Kospi

Table 1: List of countries and indices

There are a variety of models that could be used to test for the existence of time-varying
volatility, and for spillover e�ects in returns and volatility across markets.

One approach is to use a time series Vector Autoregressive (VAR) framework. This was recently
formalised by Diebold and Yilmaz (2009) and Diebold and Yilmaz (2012), who modelled spillovers
using VAR models and variance decompositions. They constructed a spillover index based both on
return spillovers and volatility spillovers. Their approach is initially attractive for our purposes,
because it enables us to see which of the six markets considered makes the largest contribution to the
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spillover of returns and volatilities into the Australian market. We commence with an application
of their model which enables us to determine which of Australia's trading partners contributes most
to equity shocks. Once we have used their model as an initial �lter we then proceed to apply models
within a GARCH framework.

The returns spillover index uses our basic index data. For the volatility based estimates we
departed from the procedure used by Diebold and Yilmaz (2009), which used weekly ranged-based
estimates to assess volatility. We preferred to use realised volatility metrics. We employ the
the Oxford-Man Institute of Quantitative Finance's "realised library" which contains daily non-
parametric measures of how the volatility of �nancial assets or indexes were in the past. Each day's
volatility measure depends solely on �nancial data from that day. We choose the series constructed
by sampling at 10 minute intervals within the day. Data is available for download on the Oxford-
Man website (http://realized.oxford-man.ox.ac.uk/), and we took daily estimates for all our markets
which were available for the full sample period, apart from the Shanghai Stock Exchange composite
index which is not covered. The raw high frequency data is taken from Reuters DataScope Tick
History database. These RV estimates were then utilised for the spillover index analysis of volatility.

2.2. The Diebold and Yilmaz (2009) Spillover Index

Diebold and Yilmaz (2009) suggest that the advantage of the adoption of a VAR framework and
the use of variance decompositions is that they permit the aggregation of spillover e�ects across
markets, distilling a wealth of information into a single spillover measure. This suits our current
purposes and permits an examination of the relative contributions to spillovers made by the six
markets in our sample. They proceed to develop their measure by taking each asset i, and adding
the shares of its forecast error variance coming from shocks to asset j, for all j 6= i, all in the context
of an n variable VAR. They then sum these error variances across all i = 1, ...., N. If we take the
case of a covariance stationary, �rst-order, two variable VAR, we have;

xt = Φxt−1 + εt

where xt = (x1t, x2t) and Φ is a 2×2 parameter matrix. In the empirical analysis which follows,
x will be either a vector of index returns or a vector of index volatilities. The moving average
representation of the VAR can be written, given the existence of covariance stationarity, as;

xt = Θ(L)εt

where Θ(L) = (1− ΦL)−1. The moving average representation can be conveniently written as;

xt = A(L)ut

where A(L) = Θ(L)Q−1
t , ut = Qtεt,E(utu

′

t) = I, and Q−1
t is the unique lower-triangular

Choleski factor of the covariance matrix of εt.
Diebold and Yilmaz (2009) then proceed to consider the optimal 1 step ahead forecast, given

by;

xt+1,t = Φxt,

with the corresponding one-step ahead error vector

et+1,t = xt+1 − xt+1,t = A0ut+1 =

[
a0,11 a0,12
a0,21 a0,22

] [
u1,t+1

u2,t+1

]
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which has the covariance matrix;

E
(
et+1,te

′

t+1,t

)
= A0A

′

0

This suggests that the variance of a one-step ahead error in forecasting x1,t is a20,11 + a20,12 and
the variance of the one-step ahead error in forecasting x2,t is a20,21 + a20,22. Diebold and Yilmaz
(2009) demonstrate that it is possible to to split the forecast error variances of each variable into
components attributable to the various system shocks. In this two variable system it is possible
to distinguish between shocks to the variable itself xi and shocks to the other variable xj , for
i, j = 1, 2, i 6= j.

Diebold and Yalmaz calculate a spillover index in the two variable case as;

S =
a20,12 + a22,1

trace(A0A
′
0

× 100 (10)

They then generalise the measure to take into account multiple securities and multiple periods
as shown below:

S =

∑H−1
h=0

∑N
i,j=1

i6=j

a2h,ij∑H−1
h=0 trace(AhA

′
h)

(11)

Diebold and Yilmaz (2012) extend their approach to include a generalized vector autoregressive
framework in which forecast-error variance decompositions are invariant to variable ordering. We
also apply this metric, but will not develop their model here, and refer the interested reader to their
original discussion of the model (See Diebold and Yilmaz (2012)).

In the empirical work that follows in the next section, we will use second-order six variable
VARs with 10 step-ahead forecasts, and apply the two variants of their model, to both return and
variance series. The results suggest that the US market dominates spillovers, with the Hong Kong
market the second most important from those considered. We use this �nding in the subsequent
GARCH analyses.

2.3. GARCH models

Manganelli and Engle (2001), claim that the main di�erences between the variations in the
approaches, adopted in this class of models, is how they deal with the return distribution, and they
proceed to classify these models into three distinct groups:

� Parametric, such as RiskMetrics and GARCH;
� Nonparametric, such as Historical simulation and the Hybrid Model;
� Semiparametric, such as CAViaR, Extreme Value Theory, and Quasi-Maximum Likelihood

GARCH.
Engle (1982), developed the Autoregressive Conditional Heteroskedasticity (ARCH) model, that

incorporates all past error terms. It was generalised to GARCH by Bollerslev (1986), to include
lagged term conditional volatility. In other words, GARCH predicts that the best indicator of future
variance is the weighted average of long-run variance, the predicted variance for the current period,
and any new information in this period, as captured by the squared residuals (Engle, (2001)).

The framework is developed as follows: consider a time series yt = Et−1(yt)+εt, where Et−1(yt)is
the conditional expectation of yt at time t− 1 and εt is the error term. The basic GARCH model
has the following speci�cation:
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εt =
√
htηt , ηt ∼ N(0, 1) (12)

ht = ω +

p∑
j=1

αε2t−j +

q∑
j=1

βjht−j (13)

in which ω > 0, αj ≥ 0 and βj ≥ 0, are su�cient conditions to ensure a positive conditional
variance, ht ≥ 0. The ARCH e�ect is captured by the parameter αj , which represents the short
run persistence of shocks to returns. βj captures the GARCH e�ect, and αj + βj measures the
persistence of the impact of shocks to returns to long-run persistence. A GARCH(1,1) process is
weakly stationary if αj + βj ≤ 1.

Ling and McAleer (2003), and Harris, Stoja and Tucker (2007), claim that the GARCH model is
�perhaps the most widely used approach to modeling the conditional covariance matrix of returns�.
Engle (2001), states it has been successful, even in its simplest form, in predicting conditional
variance. The main advantage of this model is that it allows; �a complete characterization of the
distribution of returns and there may be space for improving their performance by avoiding the
normality assumption� (Manganelli and Engle, (2001, p.9)). However, Engle (2001), Nelson (1991),
Zhang and Li (2008), and Harris, Stoja and Tucker (2007), also outline some of the disadvantages
of the GARCH model as follows; GARCH can be computationally burdensome and can involve
simultaneous estimation of a large number of parameters. GARCH tends to underestimate risk,
(when applied to Value-at-Risk, VaR), as the normality assumption of the standardized residual does
not always hold with the behaviour of �nancial returns. The speci�cation of the conditional variance
equation and the distribution used to construct the log-likelihood may be incorrect. GARCH
rules out, by assumption, the negative leverage relationship between current returns and future
volatilities, despite some empirical evidence to the contrary.

GARCH assumes that the magnitude of excess returns determines future volatility, but not the
sign (positive or negative returns), as it is a symmetric model. This is a signi�cant problem, as
research by Nelson (1991), and Glosten, Jagannathan and Runkle (GJR) (1993), shows that asset
returns and volatility do not react in the same way for negative information, or `bad news', as they
do for positive information, or `good news', of equal magnitude.

In order to deal with these problems, a large number of variations on the basic GARCH model
have been created, each one dealing with di�erent issues. Bollerslev (1990) developed a multivari-
ate GARCH (MGARCH) model that asumes Constant Conditional Correlation (CCC). In other
words, it assumes the independence of asset returns' conditional variance. Multivariate GARCH
(MGARCH) models have recently been used widely in risk management and sensitivity analysis.

Bauwens, Laurent and Rombouts (2003), suggest that the most appropriate use of multivariate
GARCH models is to model the volatility of one market with regard to the co-volatility of other
markets. In other words, these models are used to see if the volatility of one market leads the
volatility of other markets (the `Spillover E�ect'). They also assert that these models can be
used to model the tangible e�ects of volatility, such as the impact of changes in volatility on
exports and output growth rates. Bauwens, Laurent and Rombouts (2003), suggest that these
models are also e�cient in determining whether volatility is transmitted between markets, through
the conditional variance (directly), or conditional covariances (indirectly), whether shocks to one
market increase the volatility of another market, and the magnitude of that increase, and whether
negative information has the same impact as positive information of equal magnitude.
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Nelson (1991) developed the Exponential GARCH (EGARCH) model. This model uses loga-
rithms to ensure that the conditional variance is non-negative, and captures both the size and sign
e�ects of shocks, capturing the e�ect of asymmetric returns on conditional volatility. This model
was the �rst to capture the asymmetric impact of information. A second model, which is computa-
tionally less burdensome then Nelson's EGARCH, is the Glosten, Jagannathan and Runkle (GJR)
model (1993). They found signi�cant evidence of seasonal e�ects on the conditional variance in the
NYSE Value-Weighted Index. Engle and Ng (1993), claim that the GJR forecasts of volatility are
more accurate than those of the EGARCH model. Necessary and su�cient conditions for the second

order stationarity of the GARCH model are
r∑
i=1

αi+
s∑
i=1

βi < 1 , as demonstrated by Bollerslev

(1986). The necessary and su�cient conditions for the GJR (1,1) model were developed by Ling
and McAleer (2003), who showed that E(ε2t ) <∞ if α1 + γ1

2 + β1 < 1. Subsequently, McAleer et
al. (2007) demonstrated the log-moment condition for the GJR(1,1) model, which is su�cient for
consistency and asymptotic normality of the QMLE, namely E(log(α1 + γ1I(ηt)η

2
t + β1)) < 0.

2.4. Multivariate conditional volatility models

There are a wide variety of speci�cations available for multivariate conditional volatility mod-
elling. We originally adopted a bi-mean equation to model the conditional mean in the individual
markets plus an ARMA model to capture volatility spillovers from the US across the other markets
considered. We commenced by adopting a vector ARMA structure with exogenous variables for
the conditional mean equation µt as shown below:

ut = Υxt +

p∑
i=1

Φirt−i −
q∑
i=1

Θiat−i (14)

where xt denotes an m-dimensional matrix of explanatory variables, Υis a k ×m matrix and p
and q are nonnegative integers.

We considered univariate models of single assets in the previous section. However, in �nance
the behaviour of portfolios of assets is of primary interest. If we want to forecast the returns of
portfolios of assets, we must consider the correlations and covariances between individual assets. A
common approach adopted to the speci�cation of multivariate conditional means and conditional
variances of returns is as follows:

yt = E(yt | Ft−1) + εt (15)

εt = Dtηt

In (5) above, yt = (y1t, ....., ymt)
′
, ηt = (ηit, ......, ηmt)

′
, a sequence of (i.i.d) random vectors,

Ft is a vector of past information available at time t, Dt = diag(h
1/2

1 , ......., h
1/2

m ), m is the
number of returns, and t = 1, ...., n. (For a full exposition, see Li, Ling and McAleer (2003),
McAleer (2005) and Bauwens et al (2003). The Bollerslev (1990) constant conditional correlation
(CCC) model assumes that the conditional variance of each return, hit, i = 1, ....,m, follows a
univariate GARCH process:

hit = ω +

r∑
j=1

αijε
2
i,t−j +

s∑
j=1

βijhi.t−j (16)
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In (6) above, αij represents the ARCH e�ect, or the short run persistence of shocks to return i,
and βij captures the GARCH e�ect; the impact of shocks to return i on long run persistence, given
by:

r∑
j=1

αij +

s∑
j=1

βij .

It follows that the conditional correlation matrix of CCC is Γ = E(ηtη
′

t | Ft−1) = E(ηtη
′

t), where
Γ = {ρit} for i, j = 1, ....,m. From (5), εtε

′

t = Dtηtη
′

tDt, Dt = (diagQt)
1/2, and E(εtε

′

t | Ft−1) =
Qt = DtΓDt, where Qt is the conditional covariance matrix, Γ = D−1

t QtD
−1
t is the conditional

correlation matrix and the individual conditional correlation coe�cients are calculated from the
standardised residuals in equations (5) and (6). This means that there is no multivariate estimation
required in CCC, which involves m univariate GARCH models, except in the case of the calculation
of conditional correlations.

We initially attempted to apply variants of the VARMA-GARCH models but had di�culty
obtaining convergence and sensible results. We then decided to utilise Cholesky-GARCH decom-
positions, in which the analysis is done sequentially, and avoided the problems with convergence
using this approach. This could also be justi�ed because the Spillover Index analysis indicated the
relative importance of shock contributions from the di�erent markets.

2.5. Model speci�cations

Our goal in this paper is to model spillover e�ects, and we adopt a variety of parametric tech-
niques. We commenced our analysis with Diebold and Yilmaz (2009) spillover index applying a
VAR approach. Then we moved to a GARCH modelling framework with the adoption of multivari-
ate models. Problems encountered with variants of the VARMA-GARCH models lead to the use of
a model in which we could order the choice of markets. We explore the relationship between Aus-
tralia and the other two most important markets contributing spillovers, using a Cholesky-GARCH
model for the empirical analysis. (See the discussion in Tsay (2005) and Dellaportos and Pourah-
madi (2012)). (We used modi�ed versions of Tsay's (2005) Rats code and Doans (2011) Rats code
to undertake the analysis).

In the context of measuring asymmetric shocks and spillover e�ects, we proceed as follows:

1. First we apply the Diebold Yilmaz (2009) and (2012) variants of the Spillover Index to model
spillovers in both returns and volatilities.

2. This analysis reveals which market indices have the greatest impact in terms of spillovers of
returns and volatilities into the Australian market. We use this information to construct the
appropriate multivariate GARCH model.

3. We utilise Cholesky decompositions to build a higher dimensional GARCH model. We write
the vector return series as rt = µt+αt and use a vector AR model for modelling the behaviour
of the mean. We then proceed in stages:

� First we build a univariate GARCH model of the US S&P500 index series.

� Then we add the Australian All Ordinaries index series to the system, perform an orthogonal
transformation on the shock process of the Australian return series, and build a bivariate
volatility model for the system. The parameter estimates for the US model developed in step
one can be used as starting values in the bivariate estimation.
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� Given that Australia is a major trading partner of China it is possible that links with the
Chinese markets also impact upon volatility. A third component of the system is a Chinese
index, in this case the Hang Seng index. The shock process for this third return series is
subjected to an orthogonal transformation and a three-dimensional volatility model is then
constructed. Once again the parameter values from the bivariate system can be used as
starting values.

The application of Cholesky decompositions to GARCH models is discussed in Tsay (2005), Chang
and Tsay (2010) and Dellaportos and Pourahmadi (2011). This type of model is closely related to
factor models; see for example, the discussion of orthogonal GARCH models in Alexander (2001).
The advantage of the approach is that the multivariate conditional covariance estimation can be
reduced to estimating the 3N parameters of univariate GARCH models and a few 'dependence'
parameters. The advantage of this approach is that the Cholesky-GARCH models have correla-
tion matrices that are time-varying, and can be more �exible than Bollerslev's (1990) constant-
correlation GARCH models. The main disadvantage of the approach is that the stocks have to be
ordered to construct the model. However, given that we already know the relative importance of
their shock contributions this is not such a drawback for our current purposes.

The results from the empirical application of these two di�erent approaches and models are
presented in the next section.

3. Empirical results

3.1. Data characteristics

The characteristics of the basic index series, used in our data set and presented in Table 2, suggest
the existence of non-normality and fat tails. The Jarque-Bera Lagrange Multiplier test rejects the
null hypothesis that the data are normally distributed: the p-values for all indexes above are zero.
This is also evident from the skewness and excess kurtosis of the data. In order to estimate the
parameters in the GARCH models, the Quasi-Maximum Likelihood Estimator (QMLE) was used.

S&P500 ret ALL Ord ret HANGSENG ret NIKKEI ret SHANGHAI ret KOSPI ret

Mean 0.000207 0.000260 0.000224 0.000149 0.000220 0.000390

Prob. 0.383365 0.403931 0.446977 0.600047 0.474944 0.280398

Maximum 0.1095719593 0.0810922093 0.1340432034 0.1164424712 0.0901937935 0.2464004135

Minimum -0.0946951447 -0.1584914625 -0.1358877686 -0.1118564652 -0.0910142789 -0.2047944126

Skewness -0.339884 -0.995545 0.043335 -0.386103 -0.272083 -0.303964

Prob. 0.000000 0.000000 0.354947 0.000000 0.000000 0.000000

Excess Kurtosis 11.898603 9.782006 10.072437 6.134828 3.909530 20.087461

Prob. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Variance 0.000155 0.016900 0.000238 0.000220 0.000259 0.000358

Jarque-Bera 16198.34 11364.489773 11570.839096 4360.088133 1776.831001 46058.652729

Prob. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2: Descriptive statistics

The two returns series are clearly non-normal as re�ected in the descriptive statistics reported
in Table 2. Plots of the Index return series are shown in Figure 1.
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Figure 1: Return Series plots for Australia, US, Japan, Hong Kong, Shanghai and Korea.

Plots of the Oxford-Man RV estimates, sampled at ten minute intervals within the day, and
used as the series for our measures of index volatility are shown in Figure 2.

Figure 2: Volatility Series plots for Australia, US, Japan, Hong Kong, and Korea.

3.2. Spillover Index Results

The results of the application of the Spillover index to the return series, and the various
decomposition analyses, are shown in Table 3. One of the startling features of Table 3 is the
degree of in�uence on the Australian All Ordinaries returns series exerted by the other equity
markets of its major trading partners. Its contribution from others' returns, presented in the
extreme right hand column of Table 3, is the largest at 57%, whilst its contribution to its own
return shocks, is the lowest at 42.9%. At the other extreme, the most independent market indices
in Table 3, are the Shanghai composite, which explains 96.1% of the shocks to its own return
series, and the S&P500 Index, which explains 99.6% of its own return shocks.

In terms of contributions to the behaviour of other markets return series, the least in�uential is
the Korean Kospi, which only contributes 1%, as can be seen in the penultimate row of the column
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headed by 'Kospi', in Table 3. The most in�uential market is the US market, which contributes
117%. The Australian market contributes 10%, more than Japan, which contributes 6%, but less
than the Hong Kong contribution at 37%, and Chinese contribution, via the Shanghai Composite,
which contributes 25%. However, the bulk of Chinese in�uence is on the Hong Kong Index, measured
at 13.2%, and the Korean Kospi, recorded at 5.7%.

The two large in�uences on the Australian All Ordinaries return series, which can be seen by
looking across the row labelled 'All Ordinaries' in Table 3, are �rst and foremost the US market,
which contributes 41% on average, and the Hong Kong market, which contributes 11.7%. The
in�uence of the Shanghai Composite is only small measured at 3.6%. The relative in�uence of the
various markets considered in the analysis can be seen in the bottom row of Table 3. The most
in�uential is the US market, with a total contribution of 217%, if we include its contribution to its
own variance. The next most in�uential market is the Chinese market, via the Shanghai Composite,
with a total contribution measured at 121%, but the bulk of this in�uence is within it own borders,
given that it contributes 13.2% to Hong Kong return behavior, and the rest largely impacts on the
Korean market, which is recorded at 5.7%. There is only a small residual in�uence on Australia
and Japan at 3.6% and 2.2% respectively. Table 3 re�ects an average of the contributions over the
entire sample period. A moving average analysis was also conducted.

Table 3: Spillover Index variance decomposition of index returns

Shanghai

Composite

Hang Seng All Ordinaries Nikkei S&P500 Kospi Contribution

from others

Shanghai Composite 96.1 0.0 0.2 0.5 3.1 0.1 4

Hang Seng 13.2 60.0 1.0 0.8 25.0 0.1 40

All Ordinaries 3.6 11.7 42.9 0.4 41.0 0.4 57

Nikkei 2.2 7.9 4.3 59.6 26.0 0.1 40

S&P500 0.0 0.1 0.1 0.1 99.6 0.1 0

Kospi 5.7 17.6 4.5 4.2 22.3 45.8 54

Contribution to others 25 37 10 6 117 1 196

Contribution including own 121 97 53 65 217 47 32.7%

The rolling 200 period moving average of the contributions are shown in Figure 3.



3.2 Spillover Index Results 15

Figure 3: Moving average analysis of return and volatility spillovers using a 200 day window

The return spillover e�ects in the top panel of Figure 3 are smoother than the volatility spillover
e�ects in the bottom panel. The return spillovers peak in 2008-2009 and in 2011-2012. The volatility
spillover e�ects are not as smooth and peak in the middle of 2007, consistent with the onset of the
GFC, and then again in late 2008-2009, before reaching an even higher peak in late 2011. The
composition of the volatility spillover contributions is shown in Table 4.

Table 4: Spillover Index variance decomposition of index volatilities

Hang Seng All Ordinaries Nikkei S&P500 Kospi Contribution from others

Hang Seng 60.6 2.9 3.1 33.4 0 39

All Ordinaries 6.1 57.9 4.4 31.3 0.3 42

Nikkei 1.0 1.2 93.2 4.6 0.0 7

S&P500 0.4 1.3 0.4 97.3 0.6 3

Kospi 1.1 1.0 1.6 10.1 86.2 14

Contribution to others 9 6 9 79 1 105

Contribution including own 69 64 103 177 87 21%

Consistent with the evidence on the return series shown in Table 4, the US market is clearly the
most dominant, with a small 3% contribution from other markets in explaining the variance of its
own variances, but with a dominant contribution to the others of 79%.The second most independent
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market is Japan, which has 7% explained by external shocks. The US has the greatest in�uence on
the Hong Kong market at 33.4%, closely followed by Australia at 31.3%.

Indeed, Australia is the most dependent market in terms of shocks to its volatility, given that
own shocks explain on average 57.9% of the variances, whilst outside markets explain 42%. The
second most in�uential market on the Australian market volatility is Hong Kong, which explains
2.9% of Australian volatility. The least in�uential market is Korea which contributes 1% of the
shocks to the volatility of the other markets, followed in lack of importance by Australia, which
contributes 6%.

However, the Choleski decomposition and variance decompositions, as undertaken in the Diebold
and Yilmaz (2009) analysis, are in�uenced by the order in which the variables are placed in the
VAR. Diebold and Yilmaz (2012) update their method using a generalized vector autoregressive
framework, in which forecast-error variance decompositions are invariant to variable ordering. They
exploit the generalized (GIRF) VAR framework of Koop, Pesaran and Potter (1996) and Pesaran
and Shin (1998), to construct their improved Spillover metric. In the additional analysis reported
in Tables 5 and 6, and in Figure 4, we cross check our analysis applying the GIRF framework as
used by Diebold and Yilmaz (2012).

Table 5: Spillover Index GIRF variance decomposition of index returns

Shanghai

Composite

Hang Seng All Ordinaries Nikkei S&P500 Kospi Contribution

from others

Shanghai Composite 73.8 12.4 4.1 2.3 2.4 4.9 26

Hang Seng 8.2 45.1 11.4 6.6 15.7 13.0 55

All Ordinaries 2.6 10.6 41.0 6.6 29.2 10.0 59

Nikkei 1.6 7.3 8.1 53.2 19.2 10.5 47

S&P500 0.0 0.0 0.1 0.0 99.0 0.8 1

Kospi 3.6 14.2 11.0 9.7 14.2 47.3 53

Contribution to others 16 45 35 25 81 39 240

Contribution including own 90 90 76 78 180 87 40.1%

The results in Table 5 largely con�rm the previous results in Table 3 in terms of shocks to return
series. Australia is the most in�uenced by external shocks to its return series, which explain 59%
of its variance, whilst own shocks explain 41%. The most independent and in�uential market is the
US which contributes 81% of the shocks to other markets but explains 99% of its own variance. In
terms of shocks to its returns, Australia is most in�uenced by the US at a level of 29.2%, then by
Hong Kong at 10.6%, followed by Korea at 10% and Japan at 6.6%. The least in�uential series is
that of the Shanghai Exchange, which contributes only 2.6%. China, in the form of the Shanghai
Exchange, is the least in�uential market in terms of the transmission of returns shocks, contributing
only 16%, followed by Japan at 25% and then Australia at 35%. Hong Kong is the second most
in�uential market in the data set, contibuting 45% to the variance of returns in other markets.

The ordering of infuence does not correspond with market capitalizations. The NYSE has the
largest current capitalisation in the World, followed by NASDAQ and then Japan. Hong Kong is
the sixth largest market followed by Shanghai, then the Australian market is ranked fourteenth and
the Korean market �fteenth. The surprise, in this context, is the relatively small in�uence of the
Japanese market, event though it is the third largest in the world.

The relative rankings order is con�rmed by the GIRF analysis of the variance Spillover Index
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shown in Table 6.

Table 6: Spillover Index GIRF variance decomposition of index variances

Hang Seng All Ordinaries Nikkei S&P500 Kospi Contribution from others

Hang Seng 64.3 1.8 3.6 27.9 2.4 36

All Ordinaries 14.0 53.6 4.6 27.1 0.7 46

Nikkei 3.1 0.7 84.4 4.1 2.7 15

S&P500 7.3 1.0 0.6 87.0 4.2 13

Kospi 3.1 0.5 1.7 9.2 85.5 15

Contribution to others 29 7 10 68 10 125

Contribution including own 94 61 95 155 95 25%

The GIRF analysis of Spillover variances, shown in Table 6, reveals that Australia is the least
independent of all the markets, with own shocks explaining only 53.6% of its variances. The US
market again has the greatest in�uence, explaining 27.1% of the variances, followed by the Hong
Kong market which explains 14% of the variances of the variances, and then the Japanese market,
which explains 4.6%. In terms of contributions to explanations of the variances in volatility of
other markets, the US market dominates, explaining 68% in total, followed by the Hong Kong
market which explains 29%. The Australian market is the least in�uential of those considered, and
contributes only 7% to the explanation of the variances of the other markets considered.

A moving average analysis of the GIRF version of the Spillover Index is shown in in Figure 4.
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Figure 4: Moving average analysis of return and volatility GIRF based spillovers using a 200 day window

This analysis, using the Diebold and Yilmaz (2009) and (2012) versions of the Spillover Index,
con�rms that the Australian market is most in�uenced by the US market, followed by the Hong
Kong market. In the subsequent analysis, done withith a GARCH framework, we will concentrate
on the contributions of these two markets.

3.3. Analysis within a GARCH framework

Before we conducted the GARCH tests, we tested for the existence of ARCH e�ects in the data
sets. The results are shown below in Table 7, and display clear evidence of signi�cant ARCH e�ects
in all of the index series.
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Market Test Statistic (Chi-Square) p value ARCH e�ect

S&P500 977.931 0.000000 Yes
ALL ORDINARIES 441.59 0.000000 Yes
HANGSENGRET 356.648 0.000000 Yes
SHANGHAI SE 101.903 0.000000 Yes

NIKKEI 189.413 0.000000 Yes
KOSPI 258.704 0.000000 Yes

Table 7: Test results for ARCH e�ects

The results in Table 7 mean we can proceed with con�dence to the GARCH analysis.

3.4. Trivariate model based on Cholesky decompositions.

We adopt a multivariate framework applying Cholesky-GARCH models. We estimate a uni-
variate GARCH model for the US S&P500 index return series. We then add the Australian All
Ordinaries index return series to the system, perform orthogonal transformation on the shock pro-
cess for the Australian return series, and then build a bivariate volatility model for the system.
We then augment the system further, and add in a return series for the Hang Seng Index to
capture co-dependencies with China. The system then becomes a trivariate one.The parameter
estimates for the GARCH model of the US return series are used as the commencement values in
the bivariate estimation, and the estimation is augmented in a stepwise fashion, �rst adding in the
Australian index and then the Hang Seng index. The components of the return series are ordered as
rt = (SPRETLt, ASXRETt, HANGSRETt). The sample means, standard errors and correlation
matrix of the data are:

µ̂ =

 0.00021
0.00026
0.00022

 .
 σ̂1
σ̂2
σ̂3

 =

 0.0124
0.0163
0.0154

 . ρ̂ =

 1.00 0.25095 0.22933
0.25095 1.00 0.65536
0.22933 0.65536 1.00

 .
Tests of serial correlation in the three return series applying Ljung-Box statistics we obtain

Q3(1) = 1205.43335, Q3(4) = 1280.38447, andQ3(8) = 1440.30046,and all are highly signi�cant
with p values close to zero in terms of chi-squared distributions with 9, 36, and 72 degrees of
freedom respectively. There is also signi�cant evidence of dependencies in cross-correlation matrices
of returns up to six lags.

The initial estimate of the GARCH model for the US S&P 500 index return series yields the
mean equation r1t = 0.00056169(0.00009224) + −0.0577rt−1(0.00531397) + a1t with signi�cance
levels in parentheses. The GARCH equation for the US S&P 500 index return series is h1t =
0.00000158(0.000) + 0.0862α(0.000) + 0.8987h1,t−1(0.000) + e1t. The system is then augmented by
adding in the Australian S&P 200 index returns series. The model is re-estimated and �nally the
Hang Seng Index return series is added to the system. Our �nal model is estimated as shown in
Table 8.

Our �nal mean equations are shown below:

rUSRETL,t = C1 − P3USRETLt−1 + a1t
rAUSRET,t = C2 + P21USRETLt−1 − P22AUSRETt−1 + a2t

rHANGSENGRET,t = C3 + P31USRETLt−1 − P33HANGSENGRETt−1 + a3t

(17)
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It can be seen in Table 8 that all coe�cients on lagged returns in the US market are signi�cant
in all three mean equations and the lagged terms on the Australian and Chinese markets are also
signi�cant in the mean equations. Manipulation of the above equations provides the three residual
series a1t, a2t, a3t.

The three dimensional time-varying volatility model can be obtained as follows:

g11,t = A0 +A1b
2
1,t−1 +A2g11,t−1

q21,t = T0 + T1q21,t−1 − T2a2,t−1

g22,t = B0 +B1b
2
2,t−1 +B2g22,t−1

q31,t = U0 + U1q31,t−1 + U2a3,t−1

q32,t = W0 +W1q31,t−1 +W2a2,t−1

g33,t = D0 +D1b
2
3,t−1 +D2g33,t−1 +D5g22,t−1

(18)

Where b1t = a1t, b2t = a2t − q21,tb1t, b3,t = a3,t − q31,tb1t, − q32,tb2t.
It can be seen in Table 8 that all terms except C3,D0,T2,U0,W0,W1, and W2, are signi�cant.

Variable Coe�cient t statistic signi�cance

C1 0.000582744 3.79417 0.00014814
P3 -0.058987645 -2.62631 0.00863169
C2 0.000334982 1.69754 0.08959431
P21 0.707612282 32.85036 0.00000
P22 -0.097391253 -6.61486 0.00000
C3 0.000208681 1.08434 0.27821190
P31 0.578358126 30.06355 0.0000000
P33 -0.074583220 -4.83857 0.00000131
A0 0.000001584 6.87642 0.00000000
A1 0.086311860 11.29579 0.00000000
A2 0.898607050 102.85983 0.00000000
B0 0.000002529 4.30673 0.0000166
B1 0.081139161 9.36304 0.00000000
B2 0.900419623 81.19797 0.00000000
D0 0.000000013 0.03799 0.96969907
D1 0.037988239 6.29223 0.00000000
D2 0.930500532 92.98412 0.00000000
D5 0.024232739 3.85372 0.00011634
T0 0.000530013 3.74068 0.00018352
T1 0.999027780 2380.65243 0.00000000
T2 -0.034777026 -0.29552 0.76759547
U0 0.007778653 1.28076 0.20027768
U1 0.886814379 10.98282 0.00000000
U2 -1.557344857 -2.67711 0.00742597
W0 0.123906856 0.56884 0.56946643
W1 0.723415309 1.49166 0.13578952
W2 -0.525155895 -0.93358 0.35051968

Table 8: Tri-variate GARCH model based on Cholesky decompositions, US, Australia, and China
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The model diagnostics appear to be reasonably satisfactory, the Ljung-Box Q statistics for the
three sets of residual series are insigni�cant for series RES1, RES2 and RES3 for 4, 8 and 12 lags
respectively. There is evidence of an increased degree of correlation between the markets during
and after the �nancial crisis, as shown in Figure 5 below.

Figure 5: Time-varying correlations between the USA, Australia and China index series

The estimates in Table 8, of time varying correlations, augment the insights of the moving
window estimates in Figure 5, of return and volatility spillovers across all three markets. There are
peaks in correlations between the S&P500 and All Ordinaries Index, after the onset of the GFC,
in 2008-2009, and then again in 2011. There is a low level of correlation between the S&P500 and
the Hang Seng Index, but evidence of peaks in late 2008 and in 2011. There is a consistent and
relatively high level of correlation between the Australian All Ordinaries and the Hang Seng Index,
and evidence of peaks in late 2007, late 2008, 2010 and 2011.

3.5. Pre-GFC, GFC and Post-GFC Results

To further sharpen our results, we re-estimated our Choleski-GARCH model across three sub-
periods of our data set, pre-GFC, which we identi�ed as running from January 1 2004 until August
8 2007. There were a number of reasons why we chose this date. In the USA in the �rst quarter of
2007, the S&P/Case-Shiller house price index recorded the �rst year-over-year nationwide decline
since 1991. The subprime mortgage industry collapsed, plus a surge of foreclosure activity (twice
as much as in 2006) and rising interest rates threatened to depress prices further. The problems
in the subprime markets spread to the near-prime and prime mortgage markets. In February and
March 2007, more than 25 subprime lenders led for bankruptcy. In April 2007, New Century, a US
subprime lender called for Chapter 11 bankruptcy protection in the biggest collapse of a mortgage
lender in the crisis. On June 12, 2007, Bear Stearns suspended redemptions from the 10-month-old
High-Grade Structured Credit Strategies Enhanced Leverage Fund, which as of April 30, was down
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23% for the quarter. On June 29, 2007, the Federal Reserve issued a Statement on Sub Prime
Lending setting new standards for underwriting, disclosure and risk management relating to sub
prime lending.

These e�ects spread to Europe, where, on August 9, 2007, BNP Paribas, the French bank,
barred investors from redeeming cash in $2.2 billion worth of funds, after informing the markets
that it was unable to calculate the value of the three funds due to turmoil in the subprime market.
On August 17, 2007 the markets for securitized mortgage products froze and this led to further
liquidity and valuation problems.

We date the GFC period as running from August 10 2007 until May 7 2010. The crisis reached
a peak in September 2008. On September 7, 2008 there was the Federal takeover of Fannie Mae
and Freddie Mac and a pledge $200 Billion of support. On September 14, 2008 Merrill Lynch was
sold to the Bank of America amid fears of a liquidity crisis. Lehman Brothers collapsed and on
September 15 2008 Lehman Brothers led for bankruptcy protection. On the same day, Moody's and
Standard and Poor's downgraded ratings on AIG's credit over concerns about continuing losses to
mortgage-backed securities, sending the company into fears of insolvency. The following day the US
Federal Reserve loaned $85 billion to American International Group (AIG) to avoid bankruptcy.

We have some con�dence in the choice of these breakpoints, given that Allen et al., (2013, 2014),
provide statistical evidence of the importance of some of these dates using non-parametric change
point analysis. Our �nal, post GFC period runs from May 10 2010 until the end of sample June
30 2014. May 9th 2010 marked the point at which the focus of concern switched from the private
sector to the public sector, and this can be seen as marking the onset of the European Sovereign
Debt Crisis (ESDC). Figure 6 provides details of the changing time-varying correlations between
our key markets during these 3 sample sub-periods.

We report some of the more detailed results from the Choleski GARCH models, as applied
to these three distinct sub-periods, in Table 9, where we present evidence of the average value of
the conditional correlations between these three major markets, during these sub-periods, their
variances, and their extreme values. In the Pre-GFC period the mean time-varying correlations
between the S&P500 Index, the S&P500 Index and the Hang Seng Index, and the Australian All
Ordinaries and the Hang Seng Index are 0.081, 0.108 and 0.335 respectively. There is considerable
variation in these values and the extremes for the same pairs vary between -0.004 and 0.455, for
the �rst pair, -0.23 and 0.330 for the second and -0.014 and 0.685 for the third. The lowest average
correlation between these markets is between the S&P500 Index and the All Ordinaries Index. The
lowest average conditional correlation is between the S&P500 Index and the Hang Seng Index,
whilst the highest average conditional correlation is between the Australian All Ordinaries Index
and the Hang Seng Index. This pattern of a high conditional correlation between the Australian
All Ordinaries and the Hang Seng Index is repeated across all three sub-periods of the sample.
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Table 9: Choleski GARCH estimates of mean values of conditional correlations for the three sub-periods: Pre-GFC,
GFC, and Post GFC.

Pre-GFC 2004/01/01-2007/08/09

mean variance Minimum Maximum

Rho S&P500 Index and Australian All Ordinaries 0.081*** 0.004 -0.044 0.455

Rho S&P500 Index and Hang Seng Index 0.108*** 0.003 -0.023 0.330

Rho Australian All Ordinaries and Hang Seng Index 0.335 *** 0.027 -0.014 0.685

GFC 2007/08/09 - 2010/05/07

Rho S&P500 Index and Australian All Ordinaries 0.312*** 0.030 0.008 0.656

Rho S&P500 Index and Hang Seng Index 0.035*** 0.012 -0.699 0.488

Rho Australian All Ordinaries and Hang Seng Index 0.508*** 0.015 -0.048 0.930

Post GFC 2010/05/10 - 2014/06:/30

Rho S&P500 Index and Australian All Ordinaries 0.158*** 0.233 -0.914 0.985

Rho S&P500 Index and Hang Seng Index 0.069*** 0.067 -0.586 0.758

Rho Australian All Ordinaries and Hang Seng Index 0.452*** 0.021 -0.163 0.832

NB: *** indicates signi�cant at 0.001%

The GFC period marks an increase in the average conditional correlation between the S&P500
Index and the Australian All Ordinaries Index and between the Australian All Ordinaries Index
and the Hang Seng Index, which increase to 0.312 and 0.508 respectively. By contrast, the average
conditional correlation between the S&P500 Index and the Hang Seng Index drops in this period
to 0.035.

This pattern is reversed in the Post-GFC period, when the average conditional correlation
between the S&P500 Index and the Australian All Ordinaries Index reduces to 0.158, and that
between Australian All Ordinaries Index and the Hange Seng Index diminishes slightly to 0.452.
By contrast, the average conditional correlation between the S&P500 Index and the Hang Seng
Index increases to 0.069. All the average conditional correlations in all three periods are highly
signi�cant. The range of the conditional correlations, as captured by their extreme values, reported
in the last two columns of Table 9, is greatest in the Post-GFC period. The most extreme variation
is evident between the S&P500 Index and the Australian All Ordinaries index, with values ranging
from -0.914 to 0.985.

Figure 6 displays the graphs of the time-varying conditional correlations for these three sub-
periods of the sample.
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Figure 6: Time-varying correlations between the USA, Australia and China index series: Pre-GFC, GFC, and Post-
GFC
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4. Conclusion

This paper features an analysis of the impact of the GFC on Australian Index returns, and the
transmission of volatility, from Australia's main trading partners to Australia, during this period.
The Volatility Spillover Index analysis shows that the key in�uences on Australia, in terms of
both shocks to returns and to volatility, are the US and Hong Kong markets. Even though the
Australian banking system faired well during the GFC, there is strong evidence of the transmission
of volatility from the US to Australia, and to China, as re�ected in the behaviour of the Hang Seng
index. However, there is little evidence of impact on Australian markets from China, as represented
by the Shanghai market.

The trivariate Cholesky-GARCH model also shows strong in�uence from US shocks on both
Australia and China, though reduced in�uence from China in the system. All correlations between
the the three index series appear to rise post GFC. The analysis of the average behaviour of
the conditional correlations in three sub periods: Pre-GFC 2004/1/1/ until 2007/07/08/, GFC
2007/08/09 until 2010/05/07 and Post-GFC 2010/05/10 until 2014/06/20 con�rms the previous
GARCH analysis for the full period. It reveals that the highest average conditional correlations of
the Australian All Ordinaries Index are with the Hang Seng Index, and that in the GFC period these
peak at a mean value of 0.508. Contrary to the assumptions made in Forbes and Rigobon (2002),
this period of market turbulence does not necessarily mean that mean conditional correlations rise,
as the mean conditional correlation between the S&P500 Index and the Hang Seng Index drop to
0.035, their lowest value of all three sub-periods.

The problems for investors in times of �nancial crises appear to be exacerbated by the trans-
mission of shocks; even countries that faired relatively well, such as Australia, were signi�cantly
impacted. There is also less scope for risk diversi�cation, as correlations appear to rise in times of
�nancial distress. Allen and Powell (2012) provide corroboratory evidence of the rise in riskiness of
the Australian banks during the period of the GFC. Allen and Fa� (2012), survey some aspects of
the general impact of the GFC on Australian markets.

There is no obvious and straightforward interpretation of why some markets have more in�uence
on the Australian market than others. It is not a simple matter of market capitalisation, given that
Japan ranks third in the World in terms of market capitalisation, and is ranked second as a trading
partner to Australia, and yet has a relatively minor in�uence on the Australian equity market. Hong
Kong has a much greater impact, yet is only sixth in the world in market capitalisation terms, and
is not as important as Japan, in trade terms. This issue merits further exploration.
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