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Abstract: This paper will examine some commonly adopted approaches to the 
measurement of risk in finance and the various shortcomings implicit in the 
underpinnings of these approaches: early views on the nature of risk and 
uncertainty (Hume, Bernoulli, Knight, Keynes and Ramsey); the adoption of a 
mean variance decision choice criteria as a central foundation in financial 
economics and its accompanying limitations; the various approaches in 
financial econometrics to modelling volatility (ARCH, GARCH, stochastic 
volatility, realised volatility and attempts to capture ‘tail risk’); the 
measurement of risk implicit in applications of option pricing models and 
implied volatility (in particular the VIX index); the Basel Agreements and 
convention of modelling risk in a value at risk (VaR) framework; and the 
attractions of conditional value at risk (CVaR) as an alternative metric. I shall 
conclude with a consideration of the shortcomings of these various approaches 
when faced with a system wide shock as recently experienced in the global 
financial crisis. 

Keywords: risk measurement; mean-variance risk analysis; financial 
econometrics; VaR; CVaR. 

Reference to this paper should be made as follows: Allen, D.E. (2009) 
‘Measuring and modelling risk’, Global Business and Economics Review,  
Vol. 11, Nos. 3/4, pp.199–224. 

Biographical notes: David E. Allen is a Professor of Finance at Edith Cowan 
University, Perth, Western Australia. He is the author and co-author of three 
books and monographs and over 70 refereed publications on a diverse range of 
topics covering corporate financial policy decisions, asset pricing, business 
economics, funds management and performance bench-marking, volatility 
modelling and hedging, and market microstructure and liquidity. 

 

1 Introduction 

This paper is concerned with contemporary approaches to modelling risk that 
predominate in the finance and financial econometrics literature as well as in applications 
in the investment and financial services industry and via financial regulation, vis-à-vis 
Basel 11. This view of risk and belief that it can be quantified effectively is relatively 
‘recent’. It can be contrasted with earlier views on the topic. 

 
 



   

 

   

   
 

   

   

 

   

   200 D.E. Allen    
 

    
 
 

   

   
 

   

   

 

   

       
 

For example, according to Wikipedia: The term risk only emerged relatively  
recently. “In the Middle Ages the term riscium was used in highly specific contexts, 
above all in the sea trade and in its ensuing legal problems of loss and damage.” In the 
16th Century the vernacular use of rischio was derived from the Arabic word ‘قزر’, 
‘rizk’, meaning ‘to seek prosperity’. It was introduced to European usage by North 
African trading links. The term risk appeared in the English language in the 17th Century 
imported from Europe and eventually usage moved away from the concept of good and 
bad fortune to the more modern usage but even during the 20th Century the concept had a 
number of interpretations and meanings. Nevertheless, much of the modern usage has its 
origins in the Enlightenment in the work of Hume and Bernoulli, as will be discussed 
below. 

The paper is divided into several sections; a brief introduction broaching some  
early thoughts on risk is followed by section three on the foundations of risk in  
financial economics; this considers the work of Hume and Bernouilli from the 18th 
century, and Knight, Keynes and Ramsey from the 20th century. Section four  
considers modern finance and risk; Markowitz and the development of portfolio  
theory in particular. Section five considers risk modelling in financial econometrics plus 
implied volatility and the recent regulatory embrace of value at risk (VaR). The brief 
review covers the ARCH/GARCH literature, stochastic volatility models, realised 
volatility, and implied volatility and the use of the VIX index, value at risk (VaR), 
conditional value at risk (CVaR) and the results of assessments of volatility  
forecasting. The final section considers the onset of the global financial crisis, some of 
the triggers in the US housing market and why the above models failed to predict these 
events. 

2 Earlier thoughts on risk 

Risk, in the modern applications of the concept, may be contrasted with the more 
common earlier focus on luck; which might be viewed as phenomena or occurrences that 
are beyond a person’s control. For example a form of luck might be genetic endowment 
or circumstances of birth; which would represent constitutional luck that cannot be 
changed. Yet another form of luck is circumstantial luck, the haphazard favourable 
congruence of circumstances. This might be represented by the traffic jam that causes 
you to be late and to miss the flight that subsequently crashes. Such luck may also only 
be apparent in hindsight; if you had not been delayed you would not have missed the fatal 
flight. Risk is not viewed as being synonymous with good fortune. 

The term risk is defined variously in different contexts but it is frequently employed 
to refer to unfavourable consequences which may eventuate. One usage is illustrated by 
the statement that ‘drink driving may increase risk of fatal accidents’. Risk might be 
interpreted as the cause of the unwanted event; driving over the limit increases the risk of 
traffic accidents. Risk may also be used to refer to the probability of an unwanted event. 
Driving under the influence of drink increases the risk of accident; for example 
statements such as 32% of fatal accidents involve drink/driving. It may be used to refer to 
the expected probability of an unwanted event. If you drink/drive there is a 20% increase 
in the probability of an accident. Many of these usages have their origins in 18th Century 
thought. 
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3 Foundations for the treatment of risk in financial economics 

3.1 The work of David Hume 

David Hume in A Treatise on Human Nature, first published in parts in 1739 and 1740, 
writes in Section 11; on ‘Of probability, and of the idea of cause and effect’. In this 
section he talks of three important relations, identity, the situations in time and place, and 
causation. He argues that we may “consider the relation of contiguity as essential to that 
of causation; one object is associated with another, priority of time in the cause before the 
effect”. [This was later taken up in a time series econometrics sense by Clive Granger 
1969) in his concept of Granger causality]. However, Hume then cautions that belief in 
causality comes from observation; “since it is not from knowledge or any scientific 
reasoning, that we derive the opinion of the necessity of a cause to every new production, 
that opinion must necessarily arise from observation and experience”. 

He continues to suggest that the concept of a causal connexion or relation between 
pairs of objects, which can lead us beyond the immediate impressions of our memory and 
senses, as that of cause and effect is an idea that is derived from experience. This prior 
experience informs us that: “this pair of objects, in all past instances, have been 
constantly conjoined with each other: And as an object similar to one of these is supposed 
to be immediately present in its impression, we thence presume on the existence of one 
similar to its usual attendant”. He then adds that “probability is founded on the 
presumption of a resemblance betwixt those objects, of which we have had experience, 
and those, of which we have had none”. He then suggests that: “One would appear 
ridiculous, who would say, that it is only probable the sun will rise to-morrow, or that all 
men must dye; though it is plain we have no further assurance of these facts, than what 
experience affords us”. He suggests that human reason can be distinguished into three 
kinds: “viz. That from knowledge, from proofs, and from probabilities”. 

Prior experience leads us to take a view on likely outcomes: “Should it be said, that 
though in an opposition of chances it is impossible to determine with certainty, on which 
side the event will fall, yet we can pronounce with certainty, that it is more likely and 
probable, it will be on that side where there is a superior number of chances, than where 
there is an inferior.” He concludes that the supposition that the future resembles the past 
is derived from habit, based on past experience. 

3.2 Nicholas Bernouilli: another 18th century antecedent 

Justification for a subjective view of probability was provided by Nicholas Bernoulli in 
1738. Bernouilli suggests that; 

“Ever since mathematicians first began to study the measurement of risk there 
has been general agreement on the following proposition: Expected values are 
computed by multiplying each possible gain by the number of ways in which it 
can occur, and then dividing the sum of these products by the total number of 
possible cases where, in this theory, the consideration of cases which are all of 
the same probability is insisted upon.” 

Bernouilli continues that; 
“the determination of the value of an item must not be based on its price, but 
rather on the utility it yields. The price of the item is dependent only on the 



   

 

   

   
 

   

   

 

   

   202 D.E. Allen    
 

    
 
 

   

   
 

   

   

 

   

       
 

thing itself and is equal for everyone; the utility, however, is dependent on the 
particular circumstances of the person making the estimate”. 

Bernoulli developed expected utility theory as a decision criterion under conditions of 
risk. 

Figure 1 Bernouilli’s expected utility of outcomes 

 

Therefore, let AB represent the quantity of goods initially possessed. Then after 
extending AB, a curve BGLS must be constructed, whose ordinates CG, DH, EL, FM, 
etc., designate utilities corresponding to the abscissas BC, BD, BE, BF, etc., designating 
gains in wealth. Further, let m, n, p, q, etc., be the numbers which indicate the number of 
ways in which gains in wealth BC, BD, BE, BF [misprinted in the original as CF], etc., 
can occur. Then … the moral expectation of the risky proposition can be calculated as 

. . . .m CG n DH p EL q FMPO
m n p q

+ + + + ⋅⋅⋅
=

+ + + + ⋅⋅ ⋅
 (1) 

Bernouilli also discusses the benefits of diversification. He suggests that if Sempronius 
owns goods at home worth a total of 4,000 ducats and in addition possesses 8,000 ducats 
worth of commodities in foreign countries from where they can only be transported by 
sea. Yet, experience suggests that one in ten ships is wrecked at sea, then given these 
conditions if Sempronius trusted all his 8,000 ducats of goods to one ship his expectation 
of the commodities would be worth 6,751 ducats, calculated as: 

9 110 1,200 4,000 4,000−  (2) 

If, however, he were to trust equal portions of these commodities to two ships the value 
of his expectation would be: 

81 18100 12,000 .8,000 .4,000 4,000,−  in effect 7,033 ducats (3) 

The above is an analysis of the benefits of diversification, minus the treatments of 
covariances introduced by Markowitz. Bernouilli’s expected utility theory was 
subsequently adopted by John von Neumann and Oskar Morgenstern who reinterpreted 
and presented an axiomatisation of the same theory in 1944. This is often referred to as 
von Neumann-Morgenstern utility. 
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A direct link can be drawn from the work of Bernoulli to that of Harry Markowitz and 
the development of modern portfolio theory. 

3.3 Keynes and objective probabilities 

Holton (2004) argues that the work of Hume precedes two main strands in 20th Century 
thinking about risk: subjective probability and ‘operationalism’. The former suggests that 
beliefs about probability summarise individual calculations but are not scientific, or 
independently verifiable. They are specifications of individual degrees of belief.  
Keynes (1921) took the view that probabilities are ‘rationally determinate’. 

“Part of our knowledge we obtain direct; and part by argument. The theory of 
probability is concerned with the part which we obtain by argument, and it 
treats of the different degrees in which the results so obtained are conclusive or 
inconclusive”. 

For Keynes; “The terms certain and probable describe the various degrees of rational 
belief about a proposition which different amounts of knowledge authorize us to 
entertain”. Furthermore; “The theory of probability is logical, therefore, because it is 
concerned with the degree of belief which it is rational to entertain in given conditions, 
and not merely with the actual beliefs of individuals, which may or may not be rational”. 
He further adds that if our premises consist of a set of propositions h, and our conclusion 
consists of any set of propositions a, then if a knowledge of h justifies a rational belief in 
a of degree a, we say there is a probability relation of degree a between a and h. He then 
sets out four alternatives: first there may be situations in some sense in which there is no 
probability at all; or second, probabilities might not all belong to a single set of 
magnitudes measurable in terms of common units; or third, these measures may always 
exist, but in many cases are, and must remain, unknown. Finally, probabilities may 
belong to this type of set and their measures are potentially capable of being determined 
by us, although we are not always able so to determine them in practice. 

He talks of Laplace’s suggested ordering of probabilities between 0 and 1. It is a 
matter of lack of evidence of lack of skill in utilising the evidence available? What do we 
mean by unknown – unknown through lack of skill in arguing from the available 
evidence or unknown through lack of evidence? He suggests that some sets of 
probabilities can be placed in ordered series, and it follows that of any pair one may be 
nearer to certainty than another. 

He then suggests the following rules for those probabilities that can be set in an 
ordered series: 

1 Every probability lies on a path between impossibility and certainty; it is always true 
to say of a degree of probability, which is not identical either with impossibility or 
certainty, that it lies between them. Thus certainty, impossibility and any other 
degree of probability form an ordered series. 

2 A path or series, composed of degrees of probability, is not necessarily compact. It is 
not necessarily true that any pair of probabilities in the same series have a probability 
between them. 

3 The same degree of probability can lie on more than one path, i.e., it can belong to 
more than one series. 
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4 If ABC forms an ordered series, B lying between A and C, and BCD forms an 
ordered series… then ABCD forms an ordered series. 

In these circumstances he is taking an objective view of probability, but in some of the 
four views set out previously, probabilities cannot be accurately identified, a position that 
is very similar to Knight’s (1921) concept of uncertainty. 

3.4 A compromise, Frank Knight: risk and uncertainty 

Indeed, Frank Knight (1921) spanned both views. He suggested that there are two 
fundamentally different ways of arriving at the probability judgment of the form that a 
given numerical proportion of X’s are also Y’s. The first method is by a priori 
calculation, and is applicable to and used in games of chance. This is also the type of case 
usually assumed in logical and mathematical treatments of probability. It must be 
strongly contrasted with the very different type of problem in which calculation is 
impossible and the result is reached by the empirical method of applying statistics to 
actual instances. As an illustration of the first type of probability we may take throwing a 
perfect die. If the die is really perfect and known to be so, it would be merely ridiculous 
to undertake to throw it a few hundred thousand times to ascertain the probability of its 
resting on one face or another. This is an example of what might be termed the objective 
view of probability. 

At the same time, Knight also suggested that: 

“On the other hand, consider the case already mentioned, the chance that a 
building will burn. It would be as ridiculous to suggest calculating from a priori 
principles the proportion of buildings to be accidentally destroyed by fire in a 
given region and time as it would to take statistics of the throws of dice”. 

This meant that for all practical purposes, this type of scientific probability was not met 
in business decisions. 

“The import of this distinction for present purposes is that the first, 
mathematical or a priori, type of probability is practically never met with in 
business, while the second is extremely common. It is difficult to think of a 
business ‘hazard’ with regard to which it is in any degree possible to calculate 
in advance the proportion of distribution among the different possible 
outcomes. This must be dealt with, if at all, by tabulating the results of 
experience”. 

Knight suggested a simple scheme for separating three different types of probability 
situation: 

1 A priori probability: absolutely homogeneous classification of instances completely 
identical except for really indeterminate factors. This judgment of probability is on 
the same logical plane as the propositions of mathematics (which also may be 
viewed, and are viewed by the writer, as ‘ultimately’ inductions from experience). 

2 Statistical probability: empirical evaluation of the frequency of association between 
predicates, not analysable into varying combinations of equally probable alternatives. 
It must be emphasised that any high degree of confidence that the proportions found 
in the past will hold in the future is still based on an a priori judgment of 
indeterminateness. Two complications are to be kept separate: first, the impossibility 
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of eliminating all factors not really indeterminate; and, second, the impossibility of 
enumerating the equally probable alternatives involved and determining their mode 
of combination so as to evaluate the probability by a priori calculation. The main 
distinguishing characteristic of this type is that it rests on an empirical classification 
of instances. 

3 Estimates: the distinction here is that there is no valid basis of any kind for 
classifying instances. This form of probability is involved in the greatest logical 
difficulties of all, and no very satisfactory discussion of it can be given, but its 
distinction from the other types must be emphasised and some of its complicated 
relations indicated. 

The third type is the type encountered in business decisions and is synonymous with his 
famous definition of uncertainty. Knight defined the first two types of probability as risk 
and the third as uncertainty. “To preserve the distinction which has been drawn … 
between the measurable uncertainty and an unmeasurable one we may use the term ‘risk’ 
to designate the former and the term ‘uncertainty’ for the latter.” 

3.5 The subjective view point Ramsey 

Ramsey (1926) took issue with Keyne’s view. He differentiated between the type of 
probability used in physics and that in economic decision-making. He suggested a 
difference between: 

“The kind of probability whose logarithm is the entropy – is really a ratio 
between the numbers, of two classes, or the limit of such a ratio. I do not 
myself believe this, but I am willing for the present to concede to the frequency 
theory that probability as used in modern science is really the same as 
frequency.” 

He criticises Keynes as follows: 

“When it is said that the degree of the probability relation is the same as the 
degree of belief which it justifies, it seems to be presupposed that both 
probability relations, on the one hand, and degrees of belief on the other can be 
naturally expressed in terms of numbers, and then that the number expressing 
or measuring the probability relation is the same as that expressing the 
appropriate degree of belief. But if, as Mr. Keynes holds, these things are not 
always expressible by numbers, then we cannot give his statement that the 
degree of the one is the same as the degree of the other such a simple 
interpretation, but must suppose him to mean only that there is a one-one 
correspondence between probability relations and the degrees of belief which 
they justify.” 

Ramsey appeals to Hume as the foundation for his argument; 

“Among the habits of the human mind a position of peculiar importance is 
occupied by induction. Since, the time of Hume a great deal has been written 
about the justification for inductive inference. Hume showed that it could not 
be reduced to deductive inference or justified by formal logic. So far as it goes 
his demonstration seems to me final; and the suggestion of Mr. Keynes that it 
can be got round by regarding induction as a form of probable inference cannot 
in my view be maintained. But to suppose that the situation which results from 
this is a scandal to philosophy is, I think, a mistake.” 
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4 Modern finance and risk 

4.1 Markowitz portfolio selection 

Harry Markowitz (1999) in a paper on the early history of portfolio theory mentions that 
in the Merchant of Venice, one of Shakespeare’s characters in the play; the merchant 
Antonio says: 

“My ventures are not in one bottom trusted, 
Nor to one place; nor is my whole estate 
Upon the fortune of this present year; 
Therefore, my merchandise makes me not sad.” 
– Act 1, Scene 1 

He comments that not only did Shakespeare know about diversification but also 
understood covariance in an intuitive sense. Markowitz suggests that 

“A portfolio analysis starts with information concerning individual securities. It 
ends with conclusions concerning portfolios as a whole. The purpose of the 
analysis is to find portfolios which best meet the objectives of investors”. 

“A second salient feature of security investment is the correlation among 
security returns. Like most economic quantities, the returns on securities tend 
to move up and down together. This correlation is not perfect: individual 
securities and entire industries have at times moved against the general flow of 
prosperity. On the whole, however, economic good and ill tend to spread, 
causing periods of generally high or generally low economic activity.” 

He draws on a line of thought from Bernoulli and Ramsey: 

“Probability belief about the future is not necessarily a true, objective 
probability. Nevertheless, certain arithmetic relationships among past averages 
are exactly the same as corresponding relationships between random variables. 
The latter, in turn, are the same as relationships among probability beliefs. Thus 
a discussion of one of our topics can frequently serve as a discussion of all 
three”. 

“Returns on securities are uncertain events rather than random variables subject 
to known probabilities. This implies only that the expected returns, variances of 
returns, and covariances of return referred to in this chapter should be 
interpreted as based on probability beliefs rather than on objective 
probabilities”. 

“Suppose a rational man chooses a portfolio solely on the basis of its mean and 
variance. If two portfolios have the same mean and variance, they are 
considered equally good. Since the value of variance can be derived from the 
values of mean and expt(R2) this Rational man can also be said to act on the 
basis of mean and expt(R2). If two portfolio have the same expt(R) and 
expt(R2), they have the same var(R) and, by assumption, must be considered 
equally good”. 

He considers rational choice when objective probabilities are not known for some or all 
contingencies. He links his discussion to the work of Ramsey and Savage. Individuals 
will act in the face of uncertainty as if they attached ‘personal probabilities’ to each 
contingency. They will proceed by maximising expected utility, using personal 
probabilities when objective probabilities are not known. 
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Markowitz cautions that 

“Uncertainty cannot be dismissed so easily in the analysis of optimizing 
investor behaviour. An investor who knew future returns with certainty would 
invest in only one security, namely the one with the highest future return”. 

Investors would just choose the security with the highest return in they were not 
uncertain. They would not bother to diversify. Yet diversification is a common practice, 
and Markowitz suggests it is driven by a desire to reduce uncertainty. He adds that he 
will analyse decision making under these conditions as if investors faced known 
probability distributions, but adds: “Of course, none of us know probability distributions 
of security returns.” 

Markowitz (1999) points out that there were several antecedents to his development 
of portfolio theory and pointers to the tools applied. The ideas behind efficient 
diversification came from John Burr Williams’ (1938) The Theory of Investment Value. 
Williams suggested that the expected present value of future dividends drives the value of 
a stock but a treatment of risk and diversification was lacking. Markowitz had the insight 
that diversification would reduce risk but would not eliminate it. Rubinstein (2002) 
suggests that this marked a tremendous leap forward. He continues that the important 
component of risk was identified as being the risk that a security contributes to a 
portfolio, not its total variance. This is driven by its covariance of returns with those of 
other securities. 

Variance had been suggested as a measure of economic risk by Irving Fisher (1906) 
in The Nature of Income and Capital. Furthermore, Marschak (1938) had suggested using 
covariance matrices as an approximation for utility of consumption of commodities and 
Marschak was one of Markowitz’s supervisors at the University of Chicago. 

Markowitz notes that Roy (1952) suggested a portfolio selection model at the same 
time that he developed his approach. He developed an efficient set in a similar fashion 
but advised choosing a single portfolio on this set that maximises (up – d)/σ2

p where d is a 
disaster level return the investors wishes to avoid falling below. He suggests that Roy 
does not receive full credit for this. 

The portfolio expected return is calculated as: 

( ) ( )p i i
i

E R w E R=∑  (4) 

where Ri is return and wi is the weighting of asset i. 
And portfolio variance can be written as: 

2 2 2
p i i i j i j ij

i i j

w w wσ σ σ σ ρ= +∑ ∑∑  (5) 

where i ≠ j. Alternatively the expression can be written as: 
2
p i j i j ij

i j

w wσ σ σ ρ=∑∑  (6) 

Markowitz (1959) in his book on portfolio theory extended his earlier work, and amongst 
other things, outlined the diagonal model in a footnote; an approach later extended by 
Sharpe. Markowitz (1999) suggests that the subsequent development of the capital asset 
pricing model owed a great deal to Tobin (1958). His famous separation theorem showed 
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that “the proportionate composition of the non-cash assets is independent of their 
aggregate share of the investment balance”, a direct parallel to the efficiency of the 
market portfolio in derivations of the CAPM. However, the primary focus of Tobin’s 
analysis was to provide and improved theory for the holding of cash. 

In contrast to Sharpe (1964) Tobin assumed that one can lend at the risk free rate but 
not borrow. Sharpe’s more sweeping assumption that all can borrow or lend at the risk 
free rate together with the other assumptions about homogeneity of expectations etc. 
leads to the ubiquity of the capital market line when describing the efficient set. 
Markowitz (1999) points out that Tobin’s assumptions were more cautious whereas, 
Sharpe’s together with Lintner (1965) and Mossin (1966) lead directly on to the capital 
asset pricing model which was to revolutionise financial economics. 

Markowitz’s approach was a normative prescriptive one. He was interested in 
developing decision rules that could be applied by rational investors. He spent a great 
deal of time developing numerical algorithms and programming techniques. He was quite 
agnostic and practical in his recommendation of risk metrics. He did not explicitly make 
assumptions about the nature of probability density functions of returns. The adopted 
methods were very much a matter of convenience. However, Levy and Markowitz (1979) 
demonstrate that mean/variance analysis can be a good approximation for expected utility 
maximisation for quite a broad range of utility functions and empirical distributions. 

Fama and Miller (1972) in their treatment of the analysis of portfolio decision making 
under conditions of risk suggest that mean/variance analysis as a decision criteria is 
legitimate when the distributions of returns on portfolios are normal, because normal 
distributions are defined by their first two moments. 

Thus, mean/variance analysis came to occupy centre stage in financial economics. 
Meanwhile the development of the Black/Scholes option pricing model in 1973, built on 
the assumption that security prices are lognormally distributed or that returns are 
normally distributed. Their work, together with that of Merton (1973) is an approach 
yielding a pricing solution based on option replication strategies via dynamic trading. The 
‘risk neutral’ property involved a continuously hedged portfolio of appropriate positions 
in the option and the underlying instrument. This permits the application of the risk free 
discount rate to evaluate the hedge portfolio but the hedge ratio would not be apparent 
without the prior assumption about the probability density function pertaining to the 
underlying asset. These insights lead to the 1997 Nobel Prize in economics and to a focus 
on risk measurement as input to the option pricing model. This leads directly to an 
explosion of interest in the financial econometrics literature. 

5 Risk modelling in financial econometrics 

5.1 ARCH and GARCH models 

Robert Engle was one of the first to explore the modelling of volatility and was awarded 
the joint Nobel Economics Prize in 2003 for his work on ARCH modelling. He noted in 
his Nobel address that 

“Optimal behavior takes risks that are worthwhile. This is the central paradigm 
of finance; we must take risks to achieve rewards but not all risks are equally 
rewarded. Both the risks and the rewards are in the future, so it is the 
expectation of loss that is balanced against the expectation of reward.” 
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In this speech he drew a direct connection between, his work, the previously discussed 
work on portfolio theory and the CAPM, and the development of option pricing models. 

To use option pricing models in practice an estimate of the standard deviation, the 
square root of the variance; or volatility is required. A straightforward approach is to use 
the historical volatility of the returns on the underlying instrument, but how long a 
sample period should be used? Too long an interval yields an average volatility that is out 
of date; too short an interval produces a noisy estimate. Even then, ideally a forecast for 
the period in question is required. Further, empirical ‘facts’ about observed volatilities are 
that they tend to be clustered, high volatility with high subsequent volatility, and low with 
low. In 1982, when engaged in modelling inflation, Engle developed the autoregressive 
conditional heteroskedasticity or ARCH model. Engle provided the following explanation 
in his Nobel address: 

“The ARCH model described the forecast variance in terms of current 
observables. Instead of using short or long sample standard deviations, the 
ARCH model proposed taking weighted averages of past squared forecast 
errors, a type of weighted variance. These weights could give more influence to 
recent information and less to the distant past. Clearly the ARCH model was a 
simple generalisation of the sample variance. The big advance was that the 
weights could be estimated from historical data even though the true volatility 
was never observed.” 

The forecasts can be calculated every day or every period and then evaluated. The 
particular set of weights can be identifies that make the forecasts closest to the variance 
of the next return by applying a procedure, based on maximum likelihood. Once this 
dynamic model of time varying volatility has been estimated it can be used to measure 
the volatility at any time and for forecasting purposes. Once the model had been 
developed, it potential applications in finance subsequently became apparent, given the 
central roles of risk and return and the availability of daily security prices, subsequently 
followed by real time, high frequency trading data. 

In 1986, Bollerslev formulated the generalised autoregressive conditional 
heteroskedasticity (GARCH). This generalises the autoregressive ARCH model to an 
autoregressive moving average model. The weights loaded on past squared residuals are 
assumed to reduce in a geometric fashion at a rate estimate from the data set. The 
GARCH forecast variance is made up of three components in the case of the standard 
GARCH(1,1) model, which uses one lag of past forecasts and past error sizes. One 
component is the intercept which is an average of the long run variance. The second is 
the forecast for the previous period and third is the size of the previous error. 

The conditional mean return can be specified as: 

[ ]1t t tm E r−=  (7) 

the conditional variance as: 

[ ]21 –t t t th E r m−=  (8) 

If we let [ ]-1tE u  be the expectation of some variable u, given the information set 
available at time t – 1. This might be referred to as 1[ | ].tE u Z −  This suggests that Rt is 
generated by the following process: 
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t t t tR m h e= +  (9) 

where the specification of conditional variance in a GARCH (p,q) model is: 
1/2

t t th uε =  (10) 

2
1 11 1

p q
t i t i ti i

h hω α ε β− −= =
= + +∑ ∑  (11) 

Usual requirements are that ω > 0, α and β ≥  0. These are sufficient conditions for the 
conditional variance to be positive. The conditional variance depends on the average 
volatility, constant value ω, the error/reaction coefficient α and the lag/persistence 
coefficient β. The ARCH term is 2

1tε −  is the which represents news about volatility from 
previous periods and the GARCH term, which is the last period’s forecast variance 1.th −  
Both parameters (α and β) are sensitive to the historic data used to estimate the model. 
The size of the parameters α and β determine the short run dynamics of the volatility. The 
closer the GARCH lag coefficient β is to unity the greater the persistence of shocks to the 
conditional variance. A large ARCH error coefficient α causes volatility to react to 
market movements. The sum of the two components must be less than unity if the process 
is to be stationary. Typically a ‘vanilla’ GARCH (1,1) model with one lag is most 
appropriate in many applications. 

There are a wide variety of GARCH models. Hentschel (1995) provides a family of 
nested symmetric and asymmetric models. Bauwens et al. (2006) provide a survey of 
multivariate GARCH models, and Bollerslev (2008), provides a glossary to 
ARCH(GARCH). A shall mention just a few variants to provide a flavour of the 
literature. 

Engle and Bollerslev (1986) suggested a nonlinear GARCH (NGARCH) model, 
which involves a reduced response to extreme news if α2 < 2. 

2
1 1 1 1t t th hαω α ε β− −= + +  (12) 

For the above two models positive and negative past values have a symmetric effect on 
the conditional variance. Many financial series however are strongly asymmetric. 
Negative equity returns are followed by larger increases in volatility than equally large 
positive returns. 

Based on the leverage effects, Nelson (1991) [following the work of Black (1976), 
Christie (1982), and French et al. (1987)] proposed the exponential GARCH (EGARCH) 
model, which allows for asymmetry in responses to shocks to returns. Downward 
movements in asset prices often lead to greater increases in volatility than upward 
movements. 

1/2 1/2
1 1 1 1 1

1/2
2 1 1

log( ) log( ) / ( ) (2 / )

/ ( )

t t t t

t t

h h h

h

ω β α ε π

α ε

− − −

− −

⎡ ⎤= + + −⎣ ⎦
⎡ ⎤+ ⎣ ⎦

 (13) 

This model avoids non-negativity constraints on the parameters of the model by applying 
logs. The parameter α2 can generate the leverage effect because this permits the sign of 
yesterday’s shock to be in the model. 
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Yet another specification for the conditional volatility process is the GJR model 
proposed by Glosten et al. (1993). This introduces asymmetric effects by including a 
dummy variable as shown in the equation below: 

2 2
1 1 1 1 2 1 1t t t t th h Sω β α ε α ε−

− − − −= + + +  (14) 

The indicative dummy 1tS −
−  takes the value of 1 if the value of the 1 0tε − <  and 0 

otherwise. Note, that while the impact of a piece of positive news is estimated by α1 
alone, the impact of negative news is given by the sum of α1 and α2. Other variations on 
GARCH type models, which capture the asymmetric response of volatility to news, are 
presented in below. 

The Asymmetric GARCH model (AGARCH) by Engle (1990): 
2

1 1 1 1 2( )t t th hω β α ε α− −= + + +  (15) 

The models above allow several types of asymmetry in the impact of news on volatility. 
To capture the qualitative differences between alternative volatility models Engle and Ng 
(1993) define the news impact curve which characterises the impact of past return shocks 

1tε −  on the return volatility th  implicit in volatility models. The differences between the 
models presented above can be compared by contrasting their news impact curves. The 
news impact curve of EGARCH and GJR models has a minimum at 1 0,tε − =  but has 
asymmetric positive and negative sides. The AGARCH model is asymmetric as well; 
however, it is centred at 1 2.tε α− = −  This brief description only scratches the surface of 
the vast family of GARCH models. A comprehensive review of the extensive literature 
up to the early 1990s (and it has expanded greatly since then), is provided by Bollerslev 
et al. (1992). 

5.2 Stochastic volatility models 

Stochastic volatility models are based on continuous time processes and therefore both 
the asset price and volatility follow a diffusion process. The general equation, (see Asai 
and McAleer, 2005), for the mean of a time varying volatility model can be specified as; 

1/2,  ,  ~ (0,1),  1,..... ,t t t t t t ty e e h NID t Tμ ε ε= + = =  (16) 

where yt denotes the return series of interest and μt its expectation. In the case of 
stochastic volatility models the mean is often assumed to be zero and modelled before the 
estimation of the volatility process. The disturbance term εt is assumed to be i.i.d. normal 
with zero mean and unit variance. 

A common specification for the variance equation is: 

2 *2 exp( )t thσ σ=  (17) 

Thus it is defined as the multiple of a positive scaling factor σ*2 and the exponential of the 
stochastic process ht. In the standard SV model ht is specified as an autoregressive order 
one process. This makes it capable of capturing volatility clustering whereby; 
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1 ,  ~ (0,1)t t n t th h NIDφ σ η η−= +  (18) 

In the above expression the degree of volatility persistence is captured by the value of the 
coefficient φ which is restricted to having a positive value smaller than 1 to ensure that 
the process is a stationary and non-oscillating log volatility process. A discussion of 
stochastic volatility models is provided in Asai and McAleer (2005) and McAleer (2005). 
These models can be augmented to include leverage effects. Estimation of these models 
can be complex when the parameters of the logarithm of a squared normal random 
variable is required. Techniques such as Bayesian Markov chain Monte Carlo (MCMC) 
techniques have been recently applied. Given the estimation difficulties attention has 
recently switched to realised volatility models. 

5.3 Realised volatility models 

Andersen et al. (2003) provide a general framework for integration of high-frequency 
intraday data into the measurement, modelling, and forecasting of daily and lower 
frequency return volatilities and return distributions. They build on a framework provided 
by Barndorff-Neilsen and Shephard (2002). They point out that most procedures for 
modelling and forecasting financial asset return volatilities, correlations, and distributions 
rely on potentially restrictive and complicated parametric multivariate ARCH or 
stochastic volatility models. The advantage of applying realised volatility metrics 
constructed from high-frequency intraday returns, are that they permit the use of 
traditional time-series methods for modelling and forecasting. McAleer and Medeiros 
(2003) provide a review of realised volatility models. 

Allen et al. (2008) use estimates of realised volatility to build an auto-regressive 
fractionally-integrated model (ARFIMA) of the behaviour of realised volatility. The 
model is augmented to incorporate calendar effects, leverage effects and the time-varying 
volatility of volatility. The details will not be pursued here, but the next two figures are 
taken from this paper. One problem frequently encountered, is that standard GARCH 
models do not capture the explosive behaviour in the tails of return distributions. If we set 
a day as a unit of measurement, as usual, and sample the continuously compounded 
intraday returns of day t at frequency M, 

1 / 1 ( 1)/jt t j m t j Mr p p− + − + −= −  (19) 

The realised quarticity over day t can be defined as: 

4 4
,1 0

( )
3

tM
t t kj

MRQ r s dsσ
=

= →∑ ∫  (20) 

A metric developed from this is used to sample realised quarticity for S&P 500 Index 
data, obtained from SIRCA using high frequency intraday data obtained from SIRCA’s 
Taqtic Reuters database for 2 January 1996 to 26 March 2007. 
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Figure 2 S&P 500 RQ  January 1996 – March 2007 (see online version for colours) 

 

Figure 3 Why shocks to volatility matter. The difference between conditional forecasts from a 
GARCH (1,1) model and direct estimates from high frequency data, S&P 500 Index 
data, January 1996 – March 2007 
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Figure 4 Persistence in the Volatility of volatility S&P500 :RQ  autocorrelation (see online 
version for colours) 

 

We estimated the following HAR model from our full sample. 

1 2

,5 ,22

0.131 0.275 0.085
(0.029) (0.022) (0.024)

0.276 0.232
(0.047) (0.037)

t t t

t i t i t

RQ RQ RQ

RQ RQ u

− −

− −

= + +

+ + +
 (21) 

2 0.148,  2.900R BIC= =  

We then augmented our model with a number of different specifications to capture 
leverage effects in the behaviour of the volatility of volatility. Our HAR augmented 
model appears to work best in out of sample forecasting tests. The behaviour of the 
volatility of volatility is shown below in Figure 5. It can be seen in this figure that returns 
below about negative one percent generate an explosive regime in the volatility of 
volatility. 

 
 
 
 



   

 

   

   
 

   

   

 

   

    Measuring and modelling risk 215    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 5 S&P500 Estimated volatility of volatility 

 

 

5.4 Implied volatility 

5.4.1 Black-Scholes OPM 

Another way of deriving measures of volatility is via an option pricing model and its 
implied standard deviation (ISD). This started with the first closed-form option pricing 
model derived by Black and Scholes (1973) and has been expanded to various 
generalisations. If f denotes the option pricing model and c is the price of the option; then 

( , , , , )c f S X R Tσ=  (22) 
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where 

S = price of the underlying security 

X = the exercise price 

σ = volatility (standard deviation of the return on the underlying security) 

R = risk-free interest rate 

T = time until option expiry. 

The option is priced by the five variables on the RHS of the above expression. The one 
that is most problematic and difficult to measure is the volatility. The price is quite 
sensitive to the volatility (the option Vega measures this sensitivity). In their original 
development of the option pricing model Black and Scholes assumed a continuous log-
normal distribution as the probability density function of the underlying distribution of 
returns on the security against which the option is priced. Another way of using the 
model is to input the observed option price, and the other four readily observable 
variables; security price, risk free rate, exercise price, time to maturity and impute the 
implied volatility (ISD). Latane and Rendleman (1976) were amongst the first to use this 
approach. There are a number of factors that can muddy the estimation; non-sychronised 
prices of the underlying and the option, thin markets, etc, but in recent years with the 
growth in derivatives markets trading and the spread in the availability of real time 
trading data this is not such an issue. The assumption in the Black-Scholes model is one 
of a constant underlying volatility. A great deal of work has been done on ‘volatility 
smiles’; the recurring phenomena that deep in or out of the money options typically have 
higher ISDs than at the money options on the same underlying. The model predicts that 
they should be the same. 

5.4.2 The VIX index 

A common measure of volatility is the VIX index. The VIX is the Chicago Board 
Options Exchange Volatility Index which measures the implied volatility of S&P 500 
index options. A high value represents a more volatile market with more expensive 
options, given that option prices increase with greater volatility, and the VIX is a made 
up of a weighted blend of prices for a range of options on the S&P 500 Index. The VIX is 
often called the fear index, as it represents an estimate of the market's expectation of 
volatility over the next 30 day period. The VIX has more than 20 years of historical 
prices available which can be used to assess option volatility in a variety of market 
conditions. The price history for the original CBOE Volatility Index (Ticker – ‘VXO’) 
based on OEX options is available from 1986 to the present. CBOE has created a similar 
historical record for the new VIX dating back to 1990 so that investors can compare the 
new VIX with VXO. 

Whaley (2009) notes that the S&P 500 Index option market has become dominated 
by hedgers who buy index puts to insure against potential market drops. On  
22 September 2003, the CBOE changed the calculation of the VIX to account for the 
switch in volume from the OEX to SPX (from the S&P 100 index to the 500 index), and 
to the heavy use of at the money and out of the money puts for portfolio insurance 
purposes. 
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Figure 6 The VIX Index and S&P 500 Index. Friday closing levels during the period  
3 January 1986 to 31 October 2008 (see online version for colours) 

 

Source: Whaley (2009) 

Figure 6 shows the week-ending levels of the S&P 500 index and the VIX from the 
beginning of January 1986 through to 31 October 2008. The VIX stood at a record high 
after the 19 October 1987 market crash when it exceeded a level of 100. The spike at the 
end of the graph shows the impact of the onset of the Global Financial Crisis. The VIX is 
a predictor or forward looking index of the expected return volatility of the S&P 500 
index for the next 30 days. 

5.5 Value at risk 

Value at risk (VaR) is a procedure designed to forecast the maximum expected loss over 
a given period at an expected confidence level. The use of VaR has become all-pervasive 
in a relatively short period of time despite its conceptual and practical shortcomings. VaR 
received its first broad recommendation in the 1993 Group of Thirty Report. 
Subsequently its use and recognition have increased dramatically, particularly when the 
Basel Committee on Banking Supervision adopted the use of VaR models, contingent 
upon certain qualitative and quantitative standards. VaR has subsequently become one of 
the most important and widely used measures of risk. As a risk-management technique 
VaR describes the loss that can occur over a given period, at a given confidence level, 
due to exposure to market risk. The appealing simplicity of the VaR concept has lead to 
its adoption as a standard risk measure for financial entities involved in large scale 
trading operations, but also retail banks, insurance companies, institutional investors, and 
non-financial enterprises. Its use is encouraged by the Bank for International Settlements, 
the American Federal Reserve Bank and the Securities and Exchange Commission. 

The groundbreaking Basel Capital Accord, originally signed by the Group of Ten 
(G10) countries in 1988, but since largely adopted by over 100 countries, requires 
authorised deposit-taking institutions (ADIs) to hold sufficient capital to provide a 
cushion against unexpected losses. VaR is a procedure designed to forecast the maximum 
expected loss over a target horizon, given a (statistical) confidence limit. Initially, the 
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Basel Accord stipulated a standardised approach which all institutions were required to 
adopt in calculating their VaR thresholds. This approach suffered from several 
deficiencies, the most notable of which were its conservatism (or lost opportunities) and 
its failure to reward institutions with superior risk management expertise. 

Following much industry criticism, the Basel Accord was amended in April 1995 to 
allow institutions to use internal models to determine their VaR and the required capital 
charges. However, institutions wishing to use their own models are required to have the 
internal models evaluated by the regulators using the back-testing procedure. 

A description of the various methodologies for the modelling of VaR can be seen at 
http://www.gloriamundi.org/. The predominant approaches to calculating VaR rely on a 
linear approximation of the portfolio risks and assume a joint normal (or log-normal) 
distribution of the underlying market processes. There is a comprehensive survey of the 
concept by Duffie and Pan (1997), and discussions in Jorion (1996), and RiskMetricsTM 
(1996). 

Despite its universal adoption and promotion by the regulatory authorities and its 
embrace by the financial services industry there are a number of theoretical and practical 
difficulties associated with the use of VaR as a risk metric. A standard procedure, in 
terms of the practical implementation of VaR metrics, if the portfolio of concern contains 
non-linear instruments such as options, is to make recourse to historical or Monte-Carlo 
simulation based tools. 

Nevertheless, despite its popularity, VaR has certain undesirable mathematical 
properties; such as lack of sub-additivity and convexity; see the discussion in  
Arztner et al. (1997, 1999). In the case of the standard normal distribution VaR is 
proportional to the standard deviation and is coherent when based on this distribution but 
not in other circumstances. The VaR resulting from the combination of two portfolios can 
be greater than the sum of the risks of the individual portfolios. A further complication is 
associated with the fact that VaR is difficult to optimise when calculated from scenarios. 
It can be difficult to resolve as a function of a portfolio position and can exhibit multiple 
local extrema, which makes it problematic to determine the optimal mix of positions and 
the VaR of a particular mix. 

An attractive alternative to VaR is CVaR – conditional-value-at-risk. Pflug (2000) 
proved that CVaR is a coherent risk measure with a number of desirable properties such 
as convexity and monotonicity w.r.t. stochastic dominance of order 1, amongst other 
desirable characteristics. Furthermore, VaR gives no indication on the extent of the losses 
that might be encountered beyond the threshold amount suggested by the measure. By 
contrast CVaR does quantify the losses that might be encountered in the tail of the 
distribution. This is because a portfolio’s CVaR is the loss one expects to suffer, given 
that the loss is equal to or larger than its VaR. 

VaR calculates maximum expected losses over a given time period at a given 
tolerance level. There are three methods of calculating VaR. The variance-covariance 
method estimates VaR on assumption of a normal distribution. The historical method 
groups historical losses in categories from best to worst and calculates VaR on the 
assumption of history repeating itself. The Monte Carlo method simulates multiple 
random scenarios. 

CVaR is closely related to VaR. CVaR is equal or greater than VaR. It is the 
conditional expected loss under the condition it exceeds VaR. CVaR is also called mean 
excess loss, mean shortfall, or tail VaR. β-VaR is a value with probability β the loss will 
not exceed β-VaR. CVaR is the mean value of the worst (1 – β)*100% losses. For 
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instance, if we are measuring VaR at a 95% confidence level (β = 0.95), CVaR is the 
average of the 5% worst losses. [Uryasev and Rockafellar, (1999), pp.1–2]. CVaR can be 
calculated using the actual 5% worst losses (nonparametric). CVaR can also be calculated 
using a normal distribution (parametric) approach, as shown below: 

2
exp

2

2

q

CVaR

α

α σ
α π

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠=  (23) 

where qα is the tail 100α percentile of a standard normal distribution (e.g., 1.645 as 
obtained from standard distribution tables for 95% confidence). 

Allen and Powell (2009) have compared changes in bank default risk in the USA and 
UK over time, including the current crisis period. A common approach used by banks to 
measure the probability of default among customers is the KMV/Merton structural model 
which measures distance to default. We use this same approach to measure the distance 
to default of the banks themselves. As a further measure of variation of Bank risk over 
time we use the VaR methodology to examine the banks’ equity risk, as well as the 
increasingly popular CVaR methodology to measure their extreme equity risk. In 
addition, we incorporate CVaR techniques into structural modelling to measure extreme 
default risk. The study finds that US and UK banks are in an extremely precarious capital 
position based on market asset values, especially in the UK where the banks are more 
highly leveraged. We also find the existing credit ratings of Banks are much more 
favourable than default probabilities indicate they should be. Movements in market asset 
values are currently not factored into capital adequacy requirements, and based on our 
findings, recommendations are made for a revised capital adequacy framework. It is also 
possible to combine an option pricing model based approach and CVaR to work out 
implied distance to default. 

5.6 How well do these models forecast? 

Poon and Granger (2003, 2005) undertake an extensive review of the volatility 
forecasting literature. They reviewed 93 volatility studies and summarised the pairwise 
outcomes of studies that featured a direct comparison of the forecasting performance of 
different models. Their overall ranking suggested that implied standard deviations 
provided the best forecasts, followed by estimates of historical volatility, and GARCH 
with roughly equal performance. They also suggested that the number of studies using 
stochastic volatility is so small that it is not possible to make meaningful comparisons of 
performance. They comment that the success of implied volatility methods is not 
surprising because these methods tend to be based on larger and more timely information 
sets. They suggest a set of guidelines for forecasting volatility. The first considers the 
importance of considering the objectives of the forecasting exercise. No one model will 
fit all purposes and for example, forecasting the tail of a distribution might not be the 
same as forecasting implied volatility to price an option. High frequency data often 
produces accurate estimates of volatility but care must be taken of potential 
contamination from microstructure noise in very high frequency data. Historical standard 
deviations are model free but depend on how they are calculated, time intervalling, 
period, method of calculation, etc. Conditional volatility models based on ARCH, 
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GARCH, stochastic volatility models, or option based implied volatility models are 
subject to model misspecification errors. Implied volatility from option pricing models is 
known to be subject to systematic bias. The forecasts appear to work much better in the 
short term than over longer horizons. For example the forecasting power for stock index 
volatility is 50–58% for horizons from one to 20 trading days.  

6 Risk models and the global financial crisis 

I commenced this review of approaches to modelling risk with a brief mention of  
David Hume’s caution that the laws of cause and effect are based on customary 
observation. A view conditioned by the presumption that the world will remain the same. 
The financial world is subject to constant change and innovation and the human agents 
within it learn from their mistakes and revise their anticipations of anticipated outcomes 
on a continuing basis. It seems apparent that these revisions are likely to be subjective in 
the manner suggested by Ramsey rather than objective in the fashion suggested by 
Keynes. 

The treatment and assessment of risk holds centre stage in finance yet the original 
development of portfolio theory by Markowitz was as a heuristic decision device rather 
an all prevailing metric for assessing risk. Mean variance analysis came to occupy centre 
stage in finance and the convenient presumption of multivariate normal distributions. The 
work on option pricing and in modelling volatility in financial econometrics has lead to 
an enormous advance in the techniques available for modelling and forecasting risk, plus 
an appreciation of the difficulties involved in modelling the tails of distributions. 

However, none of these developments lead to an awareness or prediction of the 
Global Financial Crisis. The reviews have shown that the forecasts are predominantly 
short-term in nature. There are notable exceptions to this and Robert Shiller had been 
warning of the dangers of an over-heated US housing market well before the onset of the 
crisis in 2007. Figure 7 below shows S&P data for lagged two year housing prices in the 
US, as cited by Gorton (2009). 

Figure 7 Lagging two year house price appreciation (%) S&P Case-Shiller National US Index 

 

Source: Gorton (2009) 
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Gorton asks what triggered the Panic of 2007 and suggests that house price declines and 
foreclosures do not explain the panic. He argues that the problem lies with asymmetric 
information. Dealer banks had the information about the subprime-related structures, and 
about the placement of the various bonds. But, there was no way to learn the consensus 
value of these bonds and structures. There was no mechanism for the revelation and 
aggregation of diverse information about the effects of the house price decline and the 
foreclosures. 

Figure 8 Asset Backed Commercial Paper Outstanding in the USA 

 

Source: Gorton (2008) 

Once the problems emerged in the sub-prime market in 2007 the ramifications began to 
spread with difficulties at Freddie Mac and Bear Stearns in April and in June 2007. The 
reverberations continue around the globe with French bank BNP Paribas suspending 
three funds in August 2007. Central banks then begin to coordinate efforts to increase 
liquidity and the crisis begins to gather momentum. On 14 September 2007, the UK bank 
Northern Rock sought and received a liquidity support facility from the Bank of England, 
following problems in the credit markets and the first UK bank run for over a century. 
The bank was subsequently taken into state ownership. 

By March 2008, Bear Stearns had been acquired by J.P. Morgan Chase at $2.00 per 
share in a fire sale to avoid bankruptcy. On 7 September 2008 there was a Federal 
takeover of Fanny Mae and Freddy Mac. On 14 September, Merrill was sold to  
Bank of America and the following day Lehmann Bros. file for bankruptcy protection. 
Two days later the Federal Reserve lends support to American International Group AIG. 
Henry Paulson and Ben Bernanke then propose a $700 million emergency bail-out fund 
for purchasing toxic assets. By October, the financial crisis spreads to Europe. England, 
China, Canada, Sweden, Switzerland and the European Central Bank cut rates in a 
coordinated effort to aid the world economy. Nine US banks participate in a Federal 
Government support program: 

1 Bank of America 

2 JPMorgan Chase 

3 Wells Fargo 
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4 Citigroup 

5 Merrill Lynch 

6 Goldman Sachs 

7 Morgan Stanley 

8 Bank of New York Mellon 

9 State Street. 

The crisis spread rapidly causing a global economic shock, and a number of European 
bank failures followed. Global stock markets declined and there were large reductions in 
the market values of equities and commodities. Financial institutions delevered to pay 
back obligations, credit spreads widened and a global liquidity crisis resulted as banks 
refused to lend to one another and to customers. This then transmitted a synchronised 
global negative shock to the global real economy and international trade decreased. I 
think it would be true to say that very few foresaw the scale and the scope of the global 
problem. 

7 Conclusions 

There has been a remarkable development and extension of the methods available to 
model risk in recent years. Some of the more notable developments have been reviewed 
in this paper. Most of the models are predicated on the assumption of ‘business as usual’. 
They are quite a good for modelling the risk of an individual entity when external 
economic circumstances and behaviour remain the same. They are not adequate when 
economic behaviour changes, and the ‘normal rules’ do not apply, as has been the case 
with the recent drying up of liquidity and normal bank lending during the global financial 
crisis. In recent times we have faced uncertainty on a global scale in the manner defined 
by Frank Knight. 
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